Responda:
Solução Geral:
Solução Particular:
Explicação:
Da equação diferencial dada
tome nota, que
dividir ambos os lados por
Multiplique ambos os lados por
transpor
integrando em ambos os lados, temos os seguintes resultados
Mas
Agora podemos resolver para
Portanto, nossa solução particular é
Deus abençoe … Espero que a explicação seja útil.
Responda:
Explicação:
Reorganizando,
Assim,
Usando
Assim.
Inversamente.
O discriminante de uma equação quadrática é -5. Qual resposta descreve o número e o tipo de soluções da equação: 1 solução complexa 2 soluções reais 2 soluções complexas 1 solução real?
Sua equação quadrática tem 2 soluções complexas. O discriminante de uma equação quadrática só pode nos dar informações sobre uma equação da forma: y = ax ^ 2 + bx + c ou uma parábola. Como o maior grau desse polinômio é 2, ele não deve ter mais de 2 soluções. O discriminante é simplesmente o material sob o símbolo da raiz quadrada (+ -sqrt ("")), mas não o próprio símbolo da raiz quadrada. + -sqrt (b ^ 2-4ac) Se o discriminante, b ^ 2-4ac, for menor que zero (ou seja, qualquer número negati
Para realizar um experimento científico, os alunos precisam misturar 90 mL de uma solução de ácido a 3%. Eles têm uma solução de 1% e 10% disponível. Quantos mL da solução a 1% e da solução a 10% devem ser combinados para produzir 90 mL da solução a 3%?
Você pode fazer isso com proporções. A diferença entre 1% e 10% é 9. Você precisa subir de 1% a 3% - uma diferença de 2. Então 2/9 do material mais forte tem que estar presente, ou neste caso 20mL (e de 70mL curso do material mais fraco).
Use o discriminante para determinar o número e o tipo de soluções que a equação possui? x ^ 2 + 8x + 12 = 0 A. nenhuma solução real B. uma solução real C. duas soluções racionais D. duas soluções irracionais
C. duas soluções Racionais A solução para a equação quadrática a * x ^ 2 + b * x + c = 0 é x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In o problema em consideração, a = 1, b = 8 ec = 12 Substituindo, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 ou x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 ex = (-8 - 4) / 2 x = (- 4) / 2 e x = (-12) / 2 x = - 2 e x = -6