
Responda:
Vamos primeiro olhar para a probabilidade de nenhuma carta vencedora:
Explicação:
Primeiro cartão não vencedor:
Segunda carta não ganhadora:
Terceira carta não ganhadora:
O número de cartões na coleção de cartões de beisebol de Bob é 3 mais que o dobro do número de cartões em Andy. Se juntos eles tiverem pelo menos 156 cartas, qual é o menor número de cartas que Bob tem?

105 Digamos que A seja um número de cartas para Andy e B para Bob. O número de cartões no cartão de baseball de Bob, B = 2A + 3 A + B> = 156 A + 2A + 3> = 156 3A> = 156-3 A> = 153/3 A> = 51, portanto, o menor número de cartões que Bob tem quando Andy tem o menor número de cartas. B = 2 (51) +3 B = 105
Três cartas são selecionadas aleatoriamente de um grupo de 7. Dois dos cartões foram marcados com números vencedores. Qual é a probabilidade de que exatamente 1 das 3 cartas tenha um número vencedor?

Existem 7C_3 maneiras de escolher 3 cartas do baralho. Esse é o número total de resultados. Se você acabar com as 2 cartas não marcadas e 1 marcada: existem 5C_2 maneiras de escolher 2 cartas não marcadas das 5, e 2C_1 maneiras de escolher 1 cartas marcadas da 2. Então a probabilidade é: (5C_2 cdot 2C_1) / ( 7C_3) = 4/7
Três cartas são selecionadas aleatoriamente de um grupo de 7. Dois dos cartões foram marcados com números vencedores. Qual é a probabilidade de que nenhuma das 3 cartas tenha um número vencedor?

P ("não escolhe um vencedor") = 10/35 Estamos pegando 3 cartas de um pool de 7. Podemos usar a fórmula de combinação para ver o número de maneiras diferentes de fazer isso: C_ (n, k) = ( n!) / ((k!) (nk)!) com n = "população", k = "pega" C_ (7,3) = (7!) / ((3!) (7-3)!) = (7!) / (3! 4!) = (7xx6xx5xx4!) / (3xx2xx4!) = 35 Dessas 35 maneiras, queremos pegar as três cartas que não possuem nenhuma das duas cartas vencedoras. Podemos, portanto, pegar as 2 cartas vencedoras da mesa e ver quantas maneiras podemos escolher delas: C_ (5,3) = (5!) / ((3!) (5-3)