Como você diferencia f (x) = (sinx) / (sinx-cosx) usando a regra do quociente?

Como você diferencia f (x) = (sinx) / (sinx-cosx) usando a regra do quociente?
Anonim

Responda:

A resposta é:

#f '(x) = - cosx (senx + cosx) / (1-sin2x) #

Explicação:

A regra de cotação afirma que:

#a (x) = (b (x)) / (c (x)) #

Então:

#a '(x) = (b' (x) * c (x) -b (x) * c '(x)) / (c (x)) ^ 2 #

Da mesma forma para #f (x) #:

#f (x) = (sinx) / (sinx-cosx) #

#f '(x) = ((sinx)' (sinx-cosx) -sinx (senx-cosx) ') / (sinx-cosx) ^ 2 #

#f '(x) = (cosx (senx-cosx) -sinx (cosx - (- cosx))) / (sinx-cosx) ^ 2 #

#f '(x) = (cosxsinx-cos ^ 2x-sinxcosx-sinxcosx) / (sinx-cosx) ^ 2 #

#f '(x) = (- sinxcosx-cos ^ 2x) / (sinx-cosx) ^ 2 #

#f '(x) = - cosx (sinx + cosx) / (sinx-cosx) ^ 2 #

#f '(x) = - cosx (senx + cosx) / (sen ^ 2x-2sinxcosx + cos ^ 2x) #

#f '(x) = - cosx (senx + cosx) / ((sen ^ 2x + cos ^ 2x) -2sinxcosx) #

#f '(x) = - cosx (senx + cosx) / (1-sin2x) #