Responda:
#sqrt (-26) * sqrt (-13) = -13sqrt (2) #
Explicação:
E se
E se
Assim:
#sqrt (-26) * sqrt (-13) = i sqrt (26) * i sqrt (13) #
# = i ^ 2 * sqrt (26) sqrt (13) #
# = -1 * sqrt (26 * 13) #
# = - sqrt (13 ^ 2 * 2) #
# = - sqrt (13 ^ 2) sqrt (2) #
# = -13sqrt (2) #
Observe que você precisa ter cuidado com raízes quadradas de números negativos. Por exemplo:
# 1 = sqrt (1) = sqrt (-1 * -1)! = Sqrt (-1) * sqrt (-1) = i ^ 2 = -1 #
Qual é a forma simplificada de raiz quadrada de 10 - raiz quadrada de 5 sobre raiz quadrada de 10 + raiz quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) cor (branco) ("XXX") = cancelar (sqrt (5)) / cancelar (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) cor (branco) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) cor (branco) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) cor (branco) ("XXX") = (2-2sqrt2 + 1) / (2-1) cor (branco) ("XXX") = 3-2sqrt (2)
Qual é a raiz quadrada de 7 + raiz quadrada de 7 ^ 2 + raiz quadrada de 7 ^ 3 + raiz quadrada de 7 ^ 4 + raiz quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) A primeira coisa que podemos fazer é cancelar as raízes daquelas com os poderes pares. Desde: sqrt (x ^ 2) = x e sqrt (x ^ 4) = x ^ 2 para qualquer número, podemos apenas dizer que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Agora, 7 ^ 3 pode ser reescrito como 7 ^ 2 * 7, e que 7 ^ 2 pode sair da raiz! O mesmo se aplica a 7 ^ 5, mas é reescrito como 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 4
Por que (5 vezes a raiz quadrada de 3) mais a raiz quadrada de 27 é igual a 8 vezes a raiz quadrada de 3?
Veja explicação. Note que: sqrt (27) = sqrt (3 ^ 3) = 3sqrt (3) Temos então: 5sqrt (3) + sqrt (27) = 5sqrt (3) + 3sqrt (3) = 8sqrt (3)