Responda:
assíntota vertical
assíntota horizontal y
Explicação:
As assíntotas verticais ocorrem quando o denominador de uma função racional tende a zero. Para encontrar a equação, defina o denominador igual a zero.
resolver:
# 22-40x = 0rArr40x = 22rArrx = 22/40 = 11/20 #
# rArrx = 11/20 "é o asymptote" # As assíntotas horizontais ocorrem como
#lim_ (xto + -oo), f (x) toc "(uma constante)" # dividir termos no numerador / denominador por x
# ((4x) / x) / (22 / x- (40x) / x) = 4 / (22 / x-40) # Como
# xto + -oo, f (x) to4 / (0-40) #
# rArry = 4 / (- 40) = - 1/10 "é o asymptote" # Não há descontinuidades removíveis
gráfico {(4x) / (22-40x) -10, 10, -5, 5}
Quais são as assíntotas e descontinuidades removíveis, se houver, de f (x) = (1 - 4x ^ 2) / (1 - 2x)?
A função será descontínua quando o denominador for zero, o que ocorre quando x = 1/2 As | x | torna-se muito grande a expressão tende para + -2x. Portanto, não há assíntotas, pois a expressão não está tendendo para um valor específico. A expressão pode ser simplificada observando que o numerador é um exemplo da diferença de dois quadrados. Então f (x) = ((1-2x) (1 + 2x)) / ((1-2x)) O fator (1-2x) cancela e a expressão se torna f (x) = 2x + 1, que é o equação de uma linha reta. A descontinuidade foi removida.
Quais são as assíntotas e descontinuidades removíveis, se houver, de f (x) = (1-5x) / (1 + 2x)?
"assíntota vertical a" x = 1/2 "assíntota horizontal em" y = -5 / 2 O denominador de f (x) não pode ser zero, pois isso tornaria f (x) indefinido. Equating o denominador para zero e resolver dá o valor que x não pode ser e se o numerador é diferente de zero para esse valor, em seguida, é uma assíntota vertical. "resolver" 1 + 2x = 0rArrx = -1 / 2 "é a assíntota" Assíntotas horizontais ocorrem como "lim_ (xto + -oo), f (x) toc" (uma constante) "" dividir termos no numerador / denominador por x "f (x) = (1
Quais são as assíntotas e descontinuidades removíveis, se houver, de f (x) = 1 / (8x + 5) -x?
Assíntota em x = -5 / 8 Não há descontinuidades removíveis Você não pode cancelar nenhum fator no denominador com fatores no numerador para que não haja descontinuidades removíveis (furos). Para resolver as assíntotas defina o numerador igual a 0: 8x + 5 = 0 8x = -5 x = -5 / 8 gráfico {1 / (8x + 5) -x [-10, 10, -5, 5]}