Responda:
Explicação:
O derivado de
quando nós substituímos
Então nós aplicamos a regra da cadeia para cos (2t)
Nossa resposta final é
Mostre que cos² / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estou um pouco confuso se eu fizer Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ele vai se tornar negativo como cos (180 ° -teta) = - costheta em o segundo quadrante. Como faço para provar a questão?
Por favor veja abaixo. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sen ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
O que cos (arctan (3)) + sin (arctan (4)) é igual?
Cos (arctan (3)) + sin (arctan (4)) = 1 / sqrt (10) + 4 / sqrt (17) Vamos tan ^ -1 (3) = x então rarrtanx = 3 rarrsecx = sqrt (1 + tan ^ 2x) = sqrt (1 + 3 ^ 2) = sqrt (10) rarrcosx = 1 / sqrt (10) rarrx = cos ^ (- 1) (1 / sqrt (10)) = tan ^ (- 1) (3 ) Além disso, deixe tan ^ (- 1) (4) = y então rarrtany = 4 rarrcoty = 1/4 rarrcscy = sqrt (1 + cot ~ 2y) = sqrt (1+ (1/4) ^ 2) = sqrt ( 17) / 4 rarrsiny = 4 / sqrt (17) rarry = sin ^ (- 1) (4 / sqrt (17)) = tan ^ (- 1) 4 Agora, rarrcos (tan ^ (- 1) (3)) + sin (tan ^ (- 1) tan (4)) rarrcos (cos ^ -1 (1 / sqrt (10))) + sin (sen ^ (- 1) (4 / sqrt (17)))) = 1 / sqrt
Qual é a primeira derivada e segunda derivada de 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(a primeira derivada)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(a segunda derivada)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (d) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(a primeira derivada)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(a segunda derivada)"