Responda:
Por favor veja abaixo.
Explicação:
Um gráfico típico de
O período de
As assíntotas para serão em cada
Como a função é simplesmente
O gráfico de
Quais são as informações importantes necessárias para representar graficamente y = 2 tan (3pi (x) +4)?
Como abaixo. A forma padrão da função tangente é y = A tan (Bx - C) + D "Dado:" y = 2 tan (3 pi xi) + 4 A = 2, B = 3 pi, C = 0, D = 4 Amplitude = | A | = "NENHUMA para função tangente" "Período" = pi / | B | = pi / (3pi) = 1/3 "Deslocamento de Fase" = -C / B = 0 / (3 pi) = 0, "Deslocamento de Fase" "Deslocamento Vertical" = D = 4 # gráfico {2 tan (3 pi x) + 6 [-10, 10, -5, 5]}
Quais são as informações importantes necessárias para representar graficamente y = 3tan (2x - pi / 3)?
Mudança de fase, período e amplitude. Com a equação geral y = atan (bx-c) + d, podemos determinar que a é a amplitude, pi / b é o período, c / b é o deslocamento horizontal e d é o deslocamento vertical. Sua equação tem tudo menos horizontal. Assim, a amplitude = 3, período = pi / 2 e deslocamento horizontal = pi / 6 (à direita).
Quais são as informações importantes necessárias para representar graficamente y = tan (1/3 x)?
Período é a informação importante necessária. É 3pi neste caso. Informações importantes para representar graficamente tan (1/3 x) é o período da função. Período neste caso é pi / (1/3) = 3pi. O gráfico seria assim semelhante ao de tan x, mas espaçado em intervalos de 3pi