Responda:
Explicação:
OK. Nós temos:
Vamos ignorar o
De acordo com a identidade pitagórica,
Agora que sabemos disso, podemos escrever:
Em graus,
Responda:
Explicação:
Dado,
Se 2sin teta + 3cos teta = 2 provam que 3sin teta - 2 cos teta = ± 3?
Por favor veja abaixo. Dado rarr2sinx + 3cosx = 2 rarr2sinx = 2-3cosx rarr (2sinx) ^ 2 = (2-3cosx) ^ 2 rarr4sin ^ 2x = 4-6cosx + 9cos ^ 2x rarrcancel (4) -4cos ^ 2x = cancelar (4) - 6cosx + 9cos ^ 2x rarr13cos ^ 2x-6cosx = 0 rarrcosx (13cosx-6) = 0 rarrcosx = 0,6 / 13 rarrx = 90 ° Agora, 3sinx-2cosx = 3sin90 ° -2cos90 ° = 3
Simplifique (1-cos teta + sin teta) / (1+ cos teta + sin teta)?
= sin (teta) / (1 + cos (teta)) (1-cos (teta) + sin (teta)) / (1 + cos (teta) + sin (teta)) = (1-cos (teta) + sin (teta)) * (1 + cos (teta) + sin (teta)) / (1 + cos (teta) + sin (teta)) ^ 2 = ((1 + sin (teta)) ^ 2-cos ^ 2 (teta)) / (1 + cos ^ 2 (teta) + sen ^ 2 (teta) +2 sen (teta) + 2 cos (teta) + 2 sen (teta) cos (teta)) = ((1+ sin (teta)) ^ 2-cos ^ 2 (teta)) / (2 + 2 sin (teta) + 2 cos (teta) + 2 sin (teta) cos (teta)) = ((1 + sin (teta) ) ^ 2-cos ^ 2 (teta)) / (2 (1 + cos (teta)) + 2 sin (teta) (1 + cos (teta)) = (1/2) ((1 + sin (teta)) ) ^ 2-cos ^ 2 (teta)) / ((1 + cos (teta)) (1 + sin (teta)) = (1/2) (1 + sin (teta))
Mostre que, (1 + cos teta + i * sen teta) ^ n + (1 + cos teta - i * sin teta) ^ n = 2 ^ (n + 1) * (cos teta / 2) ^ n * cos ( n * theta / 2)?
Por favor veja abaixo. Seja 1 + costheta + isintheta = r (cosalfa + isinalpha), aqui r = sqrt ((1 + costheta) ^ 2 + sen ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (teta / 2) ) -2) = 2cos (teta / 2) e tanalfa = sineta / (1 + costheta) == (2sina (teta / 2) cos (teta / 2)) / (2cos ^ 2 (teta / 2)) = tan (theta / 2) ou alpha = theta / 2 então 1 + costheta-isintheta = r (cos (-alfa) + isin (-alfa)) = r (cosalpha-isinalpha) e podemos escrever (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n usando o teorema de DE MOivre como r ^ n (cosnalpha + isinalpha + cosnalpha-isinalpha) = 2r ^ ncosnalpha = 2 * 2