Responda:
Explicação:
Valor médio:
Então o valor médio é
Resolvendo
Responda:
Explicação:
# "para uma função f contínua no intervalo fechado" #
# a, b "o valor médio de f de x = a para x = b é" #
# "the integral" #
# • cor (branco) (x) 1 / (b-a) int_a ^ bf (x) dx #
# rArr1 / (c-1) int_1 ^ c (4 / x ^ 2) dx = 1 / (c-1) int_1 ^ c (4x ^ -2) dx #
# = 1 / (c-1) - 4x ^ -1 _1 ^ c #
# = 1 / (c-1) - 4 / x _1 ^ c #
# = 1 / (c-1) (- 4 / c - (- 4)) #
# = - 4 / (c (c-1)) + (4c) / (c (c-1) #
#rArr (4c-4) / (c (c-1)) = 1 #
# rArrc ^ 2-5c + 4 = 0 #
#rArr (c-1) (c-4) = 0 #
# rArrc = 1 "ou" c = 4 #
#c> 1rArrc = 4 #
A função p = n (1 + r) ^ t dá a população atual de uma cidade com uma taxa de crescimento de r, t anos após a população ser n. Qual função pode ser usada para determinar a população de qualquer cidade que tivesse uma população de 500 pessoas há 20 anos?
População seria dada por P = 500 (1 + r) ^ 20 Como a população há 20 anos era 500 taxa de crescimento (da cidade é r (em frações - se é r% torná-lo r / 100) e agora (ou seja, 20 anos depois, a população seria dada por P = 500 (1 + r) ^ 20
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.
Os zeros de uma função f (x) são 3 e 4, enquanto os zeros de uma segunda função g (x) são 3 e 7. Quais são os zero (s) da função y = f (x) / g (x )
Somente zero de y = f (x) / g (x) é 4. Como zeros de uma função f (x) são 3 e 4, isso significa que (x-3) e (x-4) são fatores de f (x ). Além disso, os zeros de uma segunda função g (x) são 3 e 7, o que significa que (x-3) e (x-7) são fatores de f (x). Isso significa na função y = f (x) / g (x), embora (x-3) deva cancelar o denominador g (x) = 0 não está definido, quando x = 3. Também não é definido quando x = 7. Por isso, temos um buraco em x = 3. e somente zero de y = f (x) / g (x) é 4.