Responda:
Explicação:
S é o número do qual você está aproximando sua raiz sqaure. Nesse caso
Aqui está o que isso significa e como é usado:
Primeiro, adivinhe, qual seria a raiz quadrada de 82?
a raiz quadrada de 81 é 9, então deve ser um pouco maior que 9, certo?
Nosso palpite será
Inserir 9.2 como "x" na fórmula nos dará
Este será o próximo número que colocaremos na equação. Isso é porque começamos com um palpite de 9,2 =
Vamos dizer que fizemos o mesmo cálculo 100 vezes! Então nós teríamos
Chega de falar, vamos fazer alguns cálculos reais!
Nós começamos com nosso palpite
Agora faça o mesmo com o novo número:
Vamos fazer uma última vez:
Que significa
E aí está você!
Desculpe se toda a minha conversa foi irritante. Eu tentei explicar em profundidade e de uma maneira simples, o que é sempre bom se você não estiver muito familiarizado com um determinado campo da matemática. Eu não vejo porque algumas pessoas têm que ser tão elegantes quando explicam matemática:)
Responda:
Explicação:
A principal fatoração de
#82 = 2*41#
Como não há fatores quadrados,
No entanto, note que
Como isso é da forma
#sqrt (82) = 9; bar (18) = 9 + 1 / (18 + 1 / (18 + 1 / (18 + 1 / (18 + …))) #
Geralmente mais:
#sqrt (n ^ 2 + 1) = n; bar (2n) = n + 1 / (2n + 1 / (2n + 1 / (2n + 1 / (2n + …)))) #
Mais geralmente ainda:
#sqrt (n ^ 2 + m) = n + m / (2n + m / (2n + m / (2n + m / (2n + …)))) #
Em qualquer caso, podemos usar a fração continuada para obter aproximações racionais para
Por exemplo:
#sqrt (82) ~~ 9; 18 = 9 + 1/18 = 163/18 = 9.0bar (5) #
#sqrt (82) ~~ 9; 18,18 = 9 + 1 / (18 + 1/18) = 2943/325 = 9.05bar (538461) #
#sqrt (82) ~~ 9; 18,18,18 = 9 + 1 / (18 + 1 / (18 + 1/18)) = 53137/5868 ~~ 9.05538513974 #
Uma calculadora me diz isso:
#sqrt (82) ~~ 9.0553851381374 #
Assim, você pode ver que nossas aproximações são precisas para quase tantos dígitos significativos quanto o número total de dígitos no quociente.
Qual é a forma simplificada de raiz quadrada de 10 - raiz quadrada de 5 sobre raiz quadrada de 10 + raiz quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) cor (branco) ("XXX") = cancelar (sqrt (5)) / cancelar (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) cor (branco) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) cor (branco) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) cor (branco) ("XXX") = (2-2sqrt2 + 1) / (2-1) cor (branco) ("XXX") = 3-2sqrt (2)
Qual é a raiz quadrada de 3 + a raiz quadrada de 72 - a raiz quadrada de 128 + a raiz quadrada de 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sabemos que 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, então sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sabemos que 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sabemos que 128 = 2 ^ 7 , assim sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplificando 7sqrt (3) - 2sqrt (2)
Qual é a raiz quadrada de 7 + raiz quadrada de 7 ^ 2 + raiz quadrada de 7 ^ 3 + raiz quadrada de 7 ^ 4 + raiz quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) A primeira coisa que podemos fazer é cancelar as raízes daquelas com os poderes pares. Desde: sqrt (x ^ 2) = x e sqrt (x ^ 4) = x ^ 2 para qualquer número, podemos apenas dizer que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Agora, 7 ^ 3 pode ser reescrito como 7 ^ 2 * 7, e que 7 ^ 2 pode sair da raiz! O mesmo se aplica a 7 ^ 5, mas é reescrito como 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 4