A forma inclinação-intercepto de uma equação linear é:
Onde
Para esta equação
A inclinação é
A interceptação de y é
A equação de uma linha é 2x + 3y - 7 = 0, encontre: - (1) declive da linha (2) a equação de uma linha perpendicular à linha dada e passando pela interseção da linha x-y + 2 = 0 e 3x + y-10 = 0?
-3x + 2y-2 = 0 cor (branco) ("ddd") -> cor (branco) ("ddd") y = 3 / 2x + 1 Primeira parte em muitos detalhes demonstrando como os primeiros princípios funcionam. Uma vez usado para estes e usando atalhos, você usará muito menos linhas. cor (azul) ("Determinar a intercepção das equações iniciais") x-y + 2 = 0 "" ....... Equação (1) 3x + y-10 = 0 "" .... Equação ( 2) Subtraia x de ambos os lados da Eqn (1) dando -y + 2 = -x Multiplique ambos os lados por (-1) + y-2 = + x "" ........... Equação (1_a
A inclinação de uma linha é 0 e a interseção de y é 6. Qual é a equação da linha escrita em forma de interseção de inclinação?
O declive igual a zero indica que se trata de uma linha horizontal passando por 6. A equação é então: y = 0x + 6 ou y = 6
Qual é a equação de uma linha (em forma de interseção de inclinação) que tem uma inclinação de 3 e passa por (2,5)?
Y = 3x-1 A equação de uma linha em cores (azul) "forma de declive de pontos" é. cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y-y_1 = m (x-x_1)) cor (branco) (2/2) |))) onde m representa a inclinação e (x_1, y_1) "um ponto na linha" Aqui m = 3 "e" (x_1, y_1) = (2,5) substituindo na equação. y-5 = 3 (x-2) rArry-5 = 3x-6 rArry = 3x-1 "é a equação em" cor (azul) "forma de interseção de declive"