Por definição, uma raiz quadrada de qualquer número é um número que, se multiplicado por si, produz um número original.
Se apenas um sinal de uma raiz quadrada é usado, como
Se queremos raízes quadradas positivas e negativas, é costume usar
Se não for um número para obter uma raiz quadrada, mas uma expressão algébrica, você pode ou não criar outra expressão algébrica mais simples que, se for quadrada, produz a expressão original. Por exemplo, você pode igualar
(observe o valor absoluto porque, como indicamos acima, um sinal de uma raiz quadrada tradicionalmente implica apenas o valor não negativo).
Em um caso particular deste problema, não há expressão algébrica mais simples de uma raiz quadrada
O fato de que
Além disso, deve-se notar que essa expressão é geralmente considerada dentro de um domínio de real números (a menos que seja especificamente indicado que está dentro de um domínio de complexo números). Isto implica uma restrição para
Somente se
Qual é a forma simplificada de raiz quadrada de 10 - raiz quadrada de 5 sobre raiz quadrada de 10 + raiz quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) cor (branco) ("XXX") = cancelar (sqrt (5)) / cancelar (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) cor (branco) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) cor (branco) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) cor (branco) ("XXX") = (2-2sqrt2 + 1) / (2-1) cor (branco) ("XXX") = 3-2sqrt (2)
Qual é a raiz quadrada de 3 + a raiz quadrada de 72 - a raiz quadrada de 128 + a raiz quadrada de 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sabemos que 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, então sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sabemos que 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sabemos que 128 = 2 ^ 7 , assim sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplificando 7sqrt (3) - 2sqrt (2)
Qual é a raiz quadrada de 7 + raiz quadrada de 7 ^ 2 + raiz quadrada de 7 ^ 3 + raiz quadrada de 7 ^ 4 + raiz quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) A primeira coisa que podemos fazer é cancelar as raízes daquelas com os poderes pares. Desde: sqrt (x ^ 2) = x e sqrt (x ^ 4) = x ^ 2 para qualquer número, podemos apenas dizer que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Agora, 7 ^ 3 pode ser reescrito como 7 ^ 2 * 7, e que 7 ^ 2 pode sair da raiz! O mesmo se aplica a 7 ^ 5, mas é reescrito como 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 4