Responda:
Um esboço rápido …
Explicação:
Dado:
# ax ^ 4 + bx ^ 3 + cx ^ 2 + dx + e = 0 "" # com#a! = 0 #
Isso fica confuso rapidamente, então vou apenas dar um esboço de um método …
Multiplique por
# t ^ 4 + pt ^ 2 + qt + r = 0 #
Observe que, como isso não tem prazo
# t ^ 4 + pt ^ 2 + qt + r = (t ^ 2-Em + B) (t ^ 2 + At + C) #
#color (branco) (t ^ 4 + pt ^ 2 + qt + r) = t ^ 4 + (B + C-A ^ 2) t ^ 2 + A (B-C) t + BC #
Equacionando coeficientes e rearranjando um pouco, temos:
# {(B + C = A ^ 2 + p), (B-C = q / A), (BC = d):} #
Então nós encontramos:
# (A ^ 2 + p) ^ 2 = (B + C) ^ 2 #
#color (branco) ((A ^ 2 + p) ^ 2) = (B-C) ^ 2 + 4BC #
#color (branco) ((A ^ 2 + p) ^ 2) = q ^ 2 / A ^ 2 + 4d #
Multiplicando, multiplicando por
# (A ^ 2) ^ 3 + 2p (A ^ 2) ^ 2 + (p ^ 2-4d) (A ^ 2) -q ^ 2 = 0 #
Este "cúbico em
Dado o valor de
#B = 1/2 ((B + C) + (B-C)) = 1/2 (A ^ 2 + p + q / A) #
#C = 1/2 ((B + C) - (B-C)) = 1/2 (A ^ 2 + p-q / A) #
Por isso, temos dois quadráticos para resolver.