Responda:
Explicação:
A principal fatoração de
#543 = 3 * 181#
Como não tem fatores quadrados maiores que
É um número irracional entre
Interpolando linearmente, podemos aproximar:
#sqrt (543) ~~ 23+ (543-529) / (576-529) = 23 14/47 ~~ 23,3 #
Para mais precisão, deixe
# {(p_ (i + 1) = p_i ^ 2 + 543 q_i ^ 2), (q_ (i + 1) = 2p_iq_i):} #
Assim:
# {(p_1 = p_0 ^ 2 + 543 q_0 ^ 2 = 233 ^ 2 + 543 * 10 ^ 2 = 54289 + 54300 = 108589), (q_1 = 2 p_0 q_0 = 2 * 233 * 10 = 4660):}
Apenas esta iteração é suficiente para obter
#sqrt (543) ~~ p_1 / q_1 = 108589/4660 ~~ 23.30236 #
Se queremos mais precisão, basta repetir novamente.
Nota de rodapé
A fração contínua repetida exata para
# 543 = 23; bar (3,3,3,1,14,1,3,3,3,46) #
a partir do qual é possível encontrar a solução da equação de Pell:
#669337^2 = 543 * 28724^2 + 1#
que faz
Qual é a forma simplificada de raiz quadrada de 10 - raiz quadrada de 5 sobre raiz quadrada de 10 + raiz quadrada de 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) cor (branco) ("XXX") = cancelar (sqrt (5)) / cancelar (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) cor (branco) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) cor (branco) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) cor (branco) ("XXX") = (2-2sqrt2 + 1) / (2-1) cor (branco) ("XXX") = 3-2sqrt (2)
Qual é a raiz quadrada de 3 + a raiz quadrada de 72 - a raiz quadrada de 128 + a raiz quadrada de 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sabemos que 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, então sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sabemos que 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sabemos que 128 = 2 ^ 7 , assim sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplificando 7sqrt (3) - 2sqrt (2)
Qual é a raiz quadrada de 7 + raiz quadrada de 7 ^ 2 + raiz quadrada de 7 ^ 3 + raiz quadrada de 7 ^ 4 + raiz quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) A primeira coisa que podemos fazer é cancelar as raízes daquelas com os poderes pares. Desde: sqrt (x ^ 2) = x e sqrt (x ^ 4) = x ^ 2 para qualquer número, podemos apenas dizer que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Agora, 7 ^ 3 pode ser reescrito como 7 ^ 2 * 7, e que 7 ^ 2 pode sair da raiz! O mesmo se aplica a 7 ^ 5, mas é reescrito como 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 4