Qual é a área de um hexágono cujo perímetro é de 24 pés?

Qual é a área de um hexágono cujo perímetro é de 24 pés?
Anonim

Responda:

Veja um processo de solução abaixo:

Explicação:

Supondo que este é um hexágono regular (todos os 6 lados têm o mesmo comprimento) então a fórmula para o perímetro de um hexágono é:

Substituindo 24 pés por # P # e resolvendo para #uma# dá:

# 24 "ft" = 6a #

# (24 "ft") / cor (vermelho) (6) = (6a) / cor (vermelho) (6) #

# 4 "ft" = (cor (vermelho) (cancelar (cor (preto) (6))) a) / cancelar (cor (vermelho) (6)) #

# 4 "ft" = a #

#a = 4 "ft" #

Agora podemos usar o valor para #uma# para encontrar a área do hexágono. A fórmula para a área de um hexágono é:

Substituindo # 4 "ft" # para #uma# e calculando #UMA# dá:

#A = (3sqrt (3)) / 2 (4 "ft") ^ 2 #

#A = (3sqrt (3)) / 2 16 "ft" ^ 2 #

#A = 3sqrt (3) * 8 "ft" ^ 2 #

#A = 24sqrt (3) "ft" ^ 2 #

ou

#A ~ = 41,569 "ft" ^ 2 #

Responda:

# 24 sqrt3 = 41,57 # pés quadrados

Explicação:

Precisamos assumir que é um hexágono regular - o que significa que todos os seis lados e ângulos são iguais, Se o perímetro é #24# pés, então cada lado é #24/6 = 4# pés

Um hexágono é o único polígono formado por triângulos equiláteros.

Neste hexágono, os lados do hexágono e, portanto, os lados dos triângulos são todos #4# pés e os ângulos são cada #60°#

Usando a fórmula da área trigonométrica, #A = 1 / 2ab sin C #podemos calcular a área do hexágono como:

#A = 6 xx 1/2 xx4xx4xxsin60 ° #

# = 48 sin 60 ° #

# = 48 xx sqrt3 / 2 #

# = 24 sqrt3 #

Se você calcular, você terá # 41.57 "pés" ^ 2 #