Responda:
20 e 21.
Explicação:
Vamos dizer que os dois números consecutivos são
"O quadrado da soma de dois inteiros consecutivos é
Agora, existem duas variáveis aqui, então, à primeira vista, parece insolúvel. Mas também nos é dito que
Substituir esta nova informação nos dá:
Em seguida, vamos seguir estes passos para resolver
1) Pegue a raiz quadrada de ambos os lados. Isso dará dois resultados possíveis, já que os números positivos e negativos têm quadrados positivos.
2) Subtrair
3) Divida os dois lados por
4) Verifique a resposta.
Isso significa que
Sucesso!
O comprimento de cada lado do quadrado A é aumentado em 100 por cento para fazer o quadrado B. Em seguida, cada lado do quadrado é aumentado em 50 por cento para fazer o quadrado C. Por que porcentagem é a área do quadrado C maior que a soma das áreas de quadrado A e B?
A área de C é 80% maior que a área de A + área de B Define como uma unidade de medida o comprimento de um lado de A. Área de A = 1 ^ 2 = 1 sq.unit O comprimento dos lados de B é 100% mais que comprimento dos lados de A rarr Comprimento dos lados de B = 2 unidades Área de B = 2 ^ 2 = 4 unidades quadradas. O comprimento dos lados de C é 50% maior que o comprimento dos lados de B rr Comprimento dos lados de C = 3 unidades Área de C = 3 ^ 2 = 9 unidades quadradas Área de C é 9- (1 + 4) = 4 Unidades quadradas maiores que as áreas combinadas de A e B. 4 unidades quadrad
Conhecendo a fórmula para a soma dos N inteiros a) qual é a soma dos primeiros N inteiros quadrados consecutivos, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Soma dos primeiros N inteiros do cubo consecutivos Sigma_ (k = 1) ^ N k ^ 3?
Para S_k (n) = soma_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Temos sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolvendo para sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni mas sum_ {i = 0} ^ ni = ((n + 1) n) / 2 então sum_ {i = 0} ^ ni ^ 2 = (n +1) ^
"Lena tem dois inteiros consecutivos.Ela percebe que sua soma é igual à diferença entre seus quadrados. Lena pega outros 2 inteiros consecutivos e percebe a mesma coisa. Prove algebricamente que isso é verdade para quaisquer 2 inteiros consecutivos?
Por favor, consulte a Explicação. Lembre-se de que os inteiros consecutivos diferem em 1. Portanto, se m for um inteiro, então, o número inteiro seguinte deve ser n + 1. A soma desses dois inteiros é n + (n + 1) = 2n + 1. A diferença entre seus quadrados é (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, como desejado! Sinta a alegria das matemáticas.