Responda:
Integrar a série de energia da derivada de
Explicação:
Nós conhecemos a representação da série de potências
Então a série de poder de
Você divide por
Para encontrar o raio de convergência desta série de potências, avaliamos
O par ordenado (1,5, 6) é uma solução de variação direta, como você escreve a equação da variação direta? Representa variação inversa. Representa a variação direta. Representa nem.
Se (x, y) representa uma solução de variação direta então y = m * x para alguma constante m Dado o par (1.5,6) temos 6 = m * (1.5) rarr m = 4 e a equação de variação direta é y = 4x Se (x, y) representa uma solução de variação inversa então y = m / x para alguma constante m Dado o par (1.5,6) temos 6 = m / 1.5 rarr m = 9 e a equação de variação inversa é y = 9 / x Qualquer equação que não possa ser reescrita como uma das opções acima não é uma equação de variação direta
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
Um avião voando horizontalmente a uma altitude de 1 mi e velocidade de 500mi / h passa diretamente sobre uma estação de radar. Como você encontra a taxa na qual a distância do avião até a estação está aumentando quando está a 2 milhas de distância da estação?
Quando o avião está a 2 m de distância da estação de radar, a taxa de aumento de sua distância é de aproximadamente 433mi / h. A imagem a seguir representa nosso problema: P é a posição do avião R é a posição da estação de radar V é o ponto localizado verticalmente da estação de radar na altura do avião h é a altura do avião d é a distância entre o avião e a estação de radar x é a distância entre o plano e o ponto V Como o avião voa horizontalmente, podemos concluir que o PVR