Responda:
Explicação:
A reação (força) oferecida pela parede será igual à taxa de mudança de momento das balas atingindo a parede. Portanto, a reação é
A reação oferecida pela parede na direção oposta é
Uma escada repousa contra uma parede em um ângulo de 60 graus em relação à horizontal. A escada tem 8m de comprimento e tem uma massa de 35kg. A parede é considerada sem atrito. Encontre a força que o chão e a parede exercem contra a escada?
Por favor veja abaixo
Objetos A, B, C com massas m, 2 me m são mantidos em uma superfície menos horizontal de fricção. O objeto A se move em direção a B com uma velocidade de 9 m / se faz uma colisão elástica com ele. B faz colisão completamente inelástica com C. Então a velocidade de C é?
Com uma colisão completamente elástica, pode-se supor que toda a energia cinética é transferida do corpo em movimento para o corpo em repouso. 1 / 2m_ "inicial" v ^ 2 = 1 / 2m_ "outro" v_ "final" ^ 2 1 / 2m (9) ^ 2 = 1/2 (2m) v_ "final" ^ 2 81/2 = v_ "final "^ 2 sqrt (81) / 2 = v_" final "v_" final "= 9 / sqrt (2) Agora, em uma colisão completamente inelástica, toda a energia cinética é perdida, mas o momento é transferido. Portanto m_ "inicial" v = m_ "final" v_ "final" 2m9 / sqr
Você está escolhendo entre dois clubes de saúde. O Club A oferece adesão por uma taxa de US $ 40 mais uma taxa mensal de US $ 25. O Club B oferece a adesão por uma taxa de US $ 15 mais uma taxa mensal de US $ 30. Depois de quantos meses o custo total em cada clube de saúde será o mesmo?
X = 5, portanto, após cinco meses, os custos seriam iguais entre si. Você teria que escrever equações para o preço por mês para cada clube. Seja x igual ao número de meses de associação e y igual ao custo total. O Clube A é y = 25x + 40 e o do Clube B é y = 30x + 15. Porque sabemos que os preços, y, seriam iguais, podemos definir as duas equações iguais entre si. 25x + 40 = 30x + 15. Agora podemos resolver x isolando a variável. 25x + 25 = 30x. 25 = 5x. 5 = x Após cinco meses, o custo total seria o mesmo.