Responda:
O máximo absoluto de
Explicação:
Para encontrar os extremos absolutos de uma função, precisamos encontrar seus pontos críticos. Estes são os pontos de uma função onde sua derivada é zero ou não existe.
A derivada da função é
Nós também temos que considerar os pontos finais da função quando procuramos por extrema absoluta: então as três possibilidades para extrema são
Quais são os extremos absolutos?
Se uma função tem um máximo absoluto em x = b, então f (b) é o maior valor que f pode atingir. Uma função f tem um máximo absoluto em x = b se f (b) f (x) para todo x no domínio de f.
Quais são os extremos absolutos de f (x) = x ^ 3 - 3x + 1 em [0,3]?
Em [0,3], o máximo é 19 (em x = 3) e o mínimo é -1 (em x = 1). Para encontrar os extremos absolutos de uma função (contínua) em um intervalo fechado, sabemos que os extremos devem ocorrer em qualquer número crético no intervalo ou nos pontos finais do intervalo. f (x) = x ^ 3-3x + 1 tem derivada f '(x) = 3x ^ 2-3. 3x ^ 2-3 nunca é indefinido e 3x ^ 2-3 = 0 em x = + - 1. Como -1 não está no intervalo [0,3], descartamos. O único número crítico a ser considerado é 1. f (0) = 1 f (1) = -1 ef (3) = 19. Assim, o máximo é 19 (em x = 3) e
Quais são os extremos absolutos de f (x) = (x ^ 3-7x ^ 2 + 12x-6) / (x-1) em [1,4]?
Não há máximos globais. O mínimo global é -3 e ocorre em x = 3. f (x) = (x ^ 3 - 7x ^ 2 + 12x - 6) / (x - 1) f (x) = ((x - 1) (x ^ 2 - 6x + 6)) / (x - 1) f (x) = x ^ 2 - 6x + 6, onde x 1 f '(x) = 2x - 6 O extremo absoluto ocorre em um ponto final ou no número crítico. Pontos finais: 1 e 4: x = 1 f (1): "indefinido" lim_ (x 1) f (x) = 1 x = 4 f (4) = -2 ponto (s) crítico (s): f '(x) = 2x - 6 f '(x) = 0 2x - 6 = 0, x = 3 Em x = 3 f (3) = -3 Não há maximos globais. Não há mínimos globais é -3 e ocorre em x = 3.