Precisamos usar a identidade trigonométrica:
Usando isso, obtemos:
Mostre que cos² / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estou um pouco confuso se eu fizer Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ele vai se tornar negativo como cos (180 ° -teta) = - costheta em o segundo quadrante. Como faço para provar a questão?
Por favor veja abaixo. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sen ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Como você prova que sqrt (3) cos (x + pi / 6) - cos (x + pi / 3) = cos (x) -sqrt3sinx?
LHS = sqrt3cos (x + pi / 6) -cos (x-pi / 3) = sqrt3 [cosx * cos (pi / 6) -sinx * sen (pi / 6)] - [cosx * cos (pi / 3) -sinx * sen (pi / 3)] = sqrt3 [cosx * (sqrt3 / 2) -sinx * (1/2)] - [cosx * (1/2) -sinx * (sqrt3 / 2)] = (3cosx -sqrt3sinx) / 2- (cosx-sqrt3sinx) / 2 = (3cosx-sqrt3sinx-cosx + sqrt3sinx) / 2 = (2cosx) / 2 = cosx = RHS
Como você verifica [sen ^ 3 (B) + cos ^ 3 (B)] / [sen (B) + cos (B)] = 1-sen (B) cos (B)?
Prova abaixo Expansão de um ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), e podemos usar isto: (sen ^ 3B + cos ^ 3B) / (sinB + cosB) = ((senB + cosB) (sen ^ 2B-senBcosB + cos ^ 2B)) / (senB + cosB) = sen ^ 2B-senBcosB + cos ^ 2B = sen ^ 2B + cos ^ 2B-senBcosB (identidade: sen ^ 2x + cos ^ 2x = 1) = 1-sinBcosB