Responda:
Explicação:
Podemos usar a forma de declive de pontos para encontrar uma equação. A fórmula geral para a inclinação do ponto é:
Também podemos escrever isso na forma de interceptação de declive:
e na forma padrão:
e se parece com isso:
gráfico {-1 / 2x + 5/2 -9,92, 10,08, -2,04, 7,96}
A equação de uma linha é 2x + 3y - 7 = 0, encontre: - (1) declive da linha (2) a equação de uma linha perpendicular à linha dada e passando pela interseção da linha x-y + 2 = 0 e 3x + y-10 = 0?
-3x + 2y-2 = 0 cor (branco) ("ddd") -> cor (branco) ("ddd") y = 3 / 2x + 1 Primeira parte em muitos detalhes demonstrando como os primeiros princípios funcionam. Uma vez usado para estes e usando atalhos, você usará muito menos linhas. cor (azul) ("Determinar a intercepção das equações iniciais") x-y + 2 = 0 "" ....... Equação (1) 3x + y-10 = 0 "" .... Equação ( 2) Subtraia x de ambos os lados da Eqn (1) dando -y + 2 = -x Multiplique ambos os lados por (-1) + y-2 = + x "" ........... Equação (1_a
A forma de ponto-inclinação da equação da linha que passa por (-5, -1) e (10, -7) é y + 7 = -2 / 5 (x-10). Qual é a forma padrão da equação para esta linha?
2 / 5x + y = -3 O formato da forma padrão para uma equação de uma linha é Ax + By = C. A equação que temos, y + 7 = -2/5 (x-10) está atualmente em ponto forma de declive. A primeira coisa a fazer é distribuir o -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Agora vamos subtrair 4 de ambos os lados do equação: y + 3 = -2 / 5x Como a equação precisa ser Ax + By = C, vamos mover 3 para o outro lado da equação e -2 / 5x para o outro lado da equação: 2 / 5x + y = -3 Esta equação está agora no formato padrão.
Escreva a forma de declive do ponto da equação com a inclinação dada que passa pelo ponto indicado. A.) a linha com inclinação -4 passando por (5,4). e também B.) a linha com inclinação 2 passando por (-1, -2). por favor ajude, isso é confuso?
Y-4 = -4 (x-5) "e" y + 2 = 2 (x + 1)> "a equação de uma linha em" cor (azul) "forma de declive de pontos" é. • cor (branco) (x) y-y_1 = m (x-x_1) "onde m é a inclinação e" (x_1, y_1) "um ponto na linha" (A) "dado" m = -4 "e "(x_1, y_1) = (5,4)" substituindo estes valores pela equação, obtém-se "y-4 = -4 (x-5) larro (azul)" na forma de declive de pontos "(B)" dado "m = 2 "e" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larro (azul) " em