Responda:
A Taxa Marginal Decrescente de substituição refere-se à disposição do consumidor de se separar com menos e menos quantidade de um bem, a fim de obter mais uma unidade adicional de outro bem.
Explicação:
Na análise da curva de indiferença, assuma que um consumidor consome good-y e good-x. Good-Y é representado ao longo do eixo Y e Good-X ao longo do eixo X. À medida que o consumidor desliza da esquerda para a direita ao longo da curva de indiferença, ele renuncia à boa e adquire good-x. A taxa na qual Good-Y é trocada por Good-X é chamada de taxa marginal de substituição. Essa taxa diminui. Assista a esta aula em vídeo
A função p = n (1 + r) ^ t dá a população atual de uma cidade com uma taxa de crescimento de r, t anos após a população ser n. Qual função pode ser usada para determinar a população de qualquer cidade que tivesse uma população de 500 pessoas há 20 anos?
População seria dada por P = 500 (1 + r) ^ 20 Como a população há 20 anos era 500 taxa de crescimento (da cidade é r (em frações - se é r% torná-lo r / 100) e agora (ou seja, 20 anos depois, a população seria dada por P = 500 (1 + r) ^ 20
Qual afirmação melhor descreve a equação (x + 5) 2 + 4 (x + 5) + 12 = 0? A equação é quadrática na forma porque pode ser reescrita como uma equação quadrática com a substituição u = (x + 5). A equação é quadrática em forma porque quando é expandida,
Como explicado abaixo, a substituição de u irá descrevê-lo como quadrático em u. Para quadrática em x, sua expansão terá a maior potência de x como 2, melhor descreve-a como quadrática em x.
Você está escolhendo entre dois clubes de saúde. O Club A oferece adesão por uma taxa de US $ 40 mais uma taxa mensal de US $ 25. O Club B oferece a adesão por uma taxa de US $ 15 mais uma taxa mensal de US $ 30. Depois de quantos meses o custo total em cada clube de saúde será o mesmo?
X = 5, portanto, após cinco meses, os custos seriam iguais entre si. Você teria que escrever equações para o preço por mês para cada clube. Seja x igual ao número de meses de associação e y igual ao custo total. O Clube A é y = 25x + 40 e o do Clube B é y = 30x + 15. Porque sabemos que os preços, y, seriam iguais, podemos definir as duas equações iguais entre si. 25x + 40 = 30x + 15. Agora podemos resolver x isolando a variável. 25x + 25 = 30x. 25 = 5x. 5 = x Após cinco meses, o custo total seria o mesmo.