Responda:
Eu estou supondo que você quer em forma de interseção de inclinação.
Explicação:
Formulário de interceptação de inclinação é escrito como y = mx + b, onde m é a inclinação, b é a intercepção y, e x e y permanecem escritos como x e y na equação final.
Como já temos a inclinação, nossa equação é agora:
y = (- 4/5) x + b (porque m representa a inclinação, então nós ligamos o valor da inclinação em m).
Agora devemos encontrar o y interceptar. Para fazer isso, simplesmente usamos o ponto dado, ligando 4 para xe 2 para y. Parece que:
2 = (4/5) (4) + b
2 = 16/5 + b
b = -4 / 5
Agora nós conectamos -4/5 para b e -4/5 para m e obtemos nossa equação final:
y = (- 4/5) x-4/5
A equação de uma linha é 2x + 3y - 7 = 0, encontre: - (1) declive da linha (2) a equação de uma linha perpendicular à linha dada e passando pela interseção da linha x-y + 2 = 0 e 3x + y-10 = 0?
-3x + 2y-2 = 0 cor (branco) ("ddd") -> cor (branco) ("ddd") y = 3 / 2x + 1 Primeira parte em muitos detalhes demonstrando como os primeiros princípios funcionam. Uma vez usado para estes e usando atalhos, você usará muito menos linhas. cor (azul) ("Determinar a intercepção das equações iniciais") x-y + 2 = 0 "" ....... Equação (1) 3x + y-10 = 0 "" .... Equação ( 2) Subtraia x de ambos os lados da Eqn (1) dando -y + 2 = -x Multiplique ambos os lados por (-1) + y-2 = + x "" ........... Equação (1_a
A inclinação de uma linha é 0 e a interseção de y é 6. Qual é a equação da linha escrita em forma de interseção de inclinação?
O declive igual a zero indica que se trata de uma linha horizontal passando por 6. A equação é então: y = 0x + 6 ou y = 6
Escreva a forma de declive do ponto da equação com a inclinação dada que passa pelo ponto indicado. A.) a linha com inclinação -4 passando por (5,4). e também B.) a linha com inclinação 2 passando por (-1, -2). por favor ajude, isso é confuso?
Y-4 = -4 (x-5) "e" y + 2 = 2 (x + 1)> "a equação de uma linha em" cor (azul) "forma de declive de pontos" é. • cor (branco) (x) y-y_1 = m (x-x_1) "onde m é a inclinação e" (x_1, y_1) "um ponto na linha" (A) "dado" m = -4 "e "(x_1, y_1) = (5,4)" substituindo estes valores pela equação, obtém-se "y-4 = -4 (x-5) larro (azul)" na forma de declive de pontos "(B)" dado "m = 2 "e" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larro (azul) " em