Responda:
A velocidade da corrente é
Explicação:
Deixei
Upstream, as duas velocidades estão em direções opostas.
Multiplique as 2 horas pelos parênteses em ambas as expressões.
Resolva as duas expressões para o
Assim sendo,
Resolva para
Apenas por diversão, qual é a velocidade de Ricu em água parada?
Eu espero que isso ajude, Steve
Um caiaque pode viajar 48 milhas a jusante em 8 horas, enquanto que levaria 24 horas para fazer a mesma viagem a montante. Encontre a velocidade do caiaque na água parada, assim como a velocidade da correnteza?
Ainda a velocidade do caiaque da água é 4 milhas / hora A velocidade da corrente é 2 milhas / hora. Suponha que velocidade de caiaque em ainda wate = k milhas / h Assumir a velocidade da corrente do rio = c milhas / h Ao ir fluxo dwon: 48 milhas em 8 horas = 6 milhas / hora Quando goinf up stream: 48 milhas em 24 horas = 2 milhas / hr Quando o caiaque está viajando rio abaixo, a corrente ajuda o caiaque, k + c = 6 Na direção reversa, caiaque indo contra o fluxo: k -c = 2 Adicione acima de duas equações: 2k = 8 so k = 4 Substitua o valor por k em primeiro equação: 4 + c = 6
Sarah pode remar em um barco a remo a 6 m / s em água parada. Ela sai em um rio de 400 m em um ângulo de 30 a montante. Ela alcança a outra margem do rio a 200 m a jusante do ponto oposto direto de onde ela começou. Determinar a corrente do rio?
Vamos considerar isso como um problema de projétil onde não há aceleração. Seja v_R a corrente do rio. O movimento de Sarah tem dois componentes. Através do rio. Ao longo do rio. Ambos são ortogonais entre si e, portanto, podem ser tratados de forma independente. Dada é a largura do rio = 400 m Ponto de pouso na outra margem 200 m a jusante do ponto de partida oposto direto.Sabemos que o tempo necessário para remar diretamente deve ser igual ao tempo gasto para percorrer 200 metros a jusante paralelamente à corrente. Que seja igual a t. Configurando a equação atra
Sheila pode remar um barco 2 MPH em água parada. Quão rápida é a corrente de um rio se ela leva o mesmo período de tempo para alinhar 4 milhas a montante como faz para remar 10 milhas a jusante?
A velocidade da corrente do rio é de 6/7 milhas por hora. Deixe a corrente de água ser x milhas por hora e que Sheila leva t horas para cada caminho.Como ela pode enfileirar um barco a 2 milhas por hora, a velocidade do barco a montante será de (2-x) milhas por hora e cobrirá 4 milhas, portanto, para montante, teremos (2-x) xxt = 4 ou t = 4 / (2-x) e como a velocidade do barco a jusante será (2 + x) milhas por hora e cobrirá 10 milhas daqui para a montante nós teremos (2 + x) xxt = 10 ou t = 10 / (2 + x) Portanto, 4 / (2-x) = 10 / (2 + x) ou 8 + 4x = 20-10x ou 14x = 20-8 = 12 e, portanto,