Responda:
Tudo é
Explicação:
Meça sua altura em pés e polegadas.
Converta isso para apenas polegadas usando
Você precisa saber quantos copos de leite (com 6 polegadas cada) caberão na sua altura.
Então você usa
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Então nós temos
Mas
O comprimento de uma caixa é 2 centímetros menor que sua altura. a largura da caixa é de 7 centímetros a mais que sua altura. Se a caixa tivesse um volume de 180 centímetros cúbicos, qual seria sua área de superfície?
Deixe a altura da caixa ser h cm Então seu comprimento será (h-2) cm e sua largura será (h + 7) cm Então, pela condição do problema (h-2) xx (h + 7) xxh = 180 => (h ^ 2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 Para h = 5 LHS torna-se zero Portanto (h-5) é o fator de LHS Então h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h ^ 2 + 10h + 36) = 0 Então Altura h = 5 cm Agora Comprimento = (5-2) = 3 cm Largura = 5 + 7 = 12 cm Assim, a área da superfície torna-se 2 (3x
Os copos A e B são em forma de cone e têm alturas de 32 cm e 12 cm e aberturas com raios de 18 cm e 6 cm, respectivamente. Se o copo B estiver cheio e o seu conteúdo for derramado no copo A, o copo A ficará transbordando? Se não o quão alto será o copo A ser preenchido?
Encontre o volume de cada um e compare-os. Em seguida, use o copo A no copo B e encontre a altura. O copo A não transbordará e a altura será: h_A '= 1, bar (333) cm O volume de um cone: V = 1 / 3b * h em que b é a base e igual a π * r ^ 2 h é a altura . Taça A V_A = 1 / 3b_A * h_A V_A = 1/3 (π * 18 ^ 2) * 32 V_A = 3456πcm ^ 3 Taça B V_B = 1 / 3b_B * h_B V_B = 1/3 (π * 6 ^ 2) * 12 V_B = 144πcm ^ 3 Como V_A> V_B o copo não transbordará. O novo volume de líquido do copo A após o vazamento será V_A '= V_B: V_A' = 1 / 3b_A * h_A 'V_B = 1 / 3b_A * h_A
Os copos A e B são em forma de cone e têm alturas de 24 cm e 23 cm e aberturas com raios de 11 cm e 9 cm, respectivamente. Se o copo B estiver cheio e o seu conteúdo for derramado no copo A, o copo A ficará transbordando? Se não o quão alto será o copo A ser preenchido?
~ ~ 20.7cm O volume de um cone é dado por 1 / 3pir ^ 2h, portanto o volume do cone A é 1 / 3pi11 ^ 2 * 24 = 8 * 11 ^ 2pi = 968pi e o volume do cone B é 1 / 3pi9 ^ 2 * 23 = 27 * 23pi = 621pi É óbvio que quando o conteúdo de um cone cheio B é despejado no cone A, ele não transbordará. Deixe-o alcançar onde a superfície circular superior formará um círculo de raio x e alcançará uma altura de y, então a relação se torna x / 11 = y / 24 => x = (11y) / 24 Assim igualando 1 / 3pix ^ 2y = 621pi => 1 / 3pi ((11y) / 24) ^ 2y = 621pi =>