Os copos A e B são em forma de cone e têm alturas de 32 cm e 12 cm e aberturas com raios de 18 cm e 6 cm, respectivamente. Se o copo B estiver cheio e o seu conteúdo for derramado no copo A, o copo A ficará transbordando? Se não o quão alto será o copo A ser preenchido?

Os copos A e B são em forma de cone e têm alturas de 32 cm e 12 cm e aberturas com raios de 18 cm e 6 cm, respectivamente. Se o copo B estiver cheio e o seu conteúdo for derramado no copo A, o copo A ficará transbordando? Se não o quão alto será o copo A ser preenchido?
Anonim

Responda:

Encontre o volume de cada um e compare-os. Em seguida, use o copo A no copo B e encontre a altura.

O copo A não transbordará e a altura será:

# h_A '= 1, bar (333) cm #

Explicação:

O volume de um cone:

# V = 1 / 3b * h #

Onde # b # é a base e igual a # π * r ^ 2 #

# h # é a altura.

Taça A

# V_A = 1 / 3b_A * h_A #

# V_A = 1/3 (π * 18 ^ 2) * 32 #

# V_A = 3456πcm ^ 3 #

Taça B

# V_B = 1 / 3b_B * h_B #

# V_B = 1/3 (π * 6 ^ 2) * 12 #

# V_B = 144πcm ^ 3 #

Desde a #V_A> V_B # o copo não transbordará. O novo volume de líquido do copo A após o vazamento será # V_A '= V_B #:

# V_A '= 1 / 3b_A * h_A' #

# V_B = 1 / 3b_A * h_A '#

# h_A '= 3 (V_B) / b_A #

# h_A '= 3 (144π) / (π * 18 ^ 2) #

# h_A '= 1, bar (333) cm #