Qual é o múltiplo menos comum para frac {x} {x-2} + frac {x} {x + 3} = frac {1} {x ^ 2 + x-6} e como você resolve as equações ?
Veja explicação (x-2) (x + 3) por FOIL (First, Outside, Inside, Last) é x ^ 2 + 3x-2x-6 que simplifica para x ^ 2 + x-6. Este será o seu múltiplo menos comum (MMC). Portanto, você pode encontrar um denominador comum no MMC ... x / (x-2) ((x + 3) / (x + 3)) + x / (x + 3 ) ((x-2) / (x-2)) = 1 / (x ^ 2 + x-6) Simplifique para obter: (x (x + 3) + x (x-2)) / (x ^ 2 + x-6) = 1 / (x ^ 2 + x-6) Você vê que os denominadores são os mesmos, então tire-os. Agora você tem o seguinte - x (x + 3) + x (x-2) = 1 Vamos distribuir; agora temos x ^ 2 + 3x + x ^ 2-2x = 1 Adicionando termos
Como você resolve frac {2x} {2x + 5} = frac {2} {3} - frac {6} {4x + 10}?
X = 1/2 [2x] / [2x +5] = 2/3 - 6 / [2 {2x + 5}] [2x + 3] / [2x + 5] = 2/3 6x + 9 = 4x + 10 2x = 10 x = 1/2
Como você resolve frac {x} {x - 1} + frac {4} {x + 1} = frac {4x - 2} {x ^ {2} - 1}?
Ok, em primeiro lugar, você tem x-1, x + 1 e x ^ 2-1 como o denominador em sua pergunta. Assim, tomo isso como a questão pressupõe implicitamente que x! = 1 ou -1. Isso é realmente muito importante. Vamos combinar a fração à direita em uma única fração, x / (x-1) + 4 / (x + 1) = (x (x + 1)) / ((x-1) (x + 1)) + (4 (x-1)) / ((x-1) (x + 1)) = (x ^ 2 + x + 4x - 4) / (x ^ 2-1) = (x ^ 2 + 5x -4 ) / (x ^ 2 -1) Aqui, note que (x-1) (x + 1) = x ^ 2 - 1 da diferença de dois quadrados. Temos: (x ^ 2 + 5x -4) / (x ^ 2 -1) = (4x-2) / (x ^ 2-1) Cancele o denominador (multiplique amb