
Responda:
Número de vencedores
Explicação:
Deixei -
Número de vencedores
Número de participantes que não ganham
Nós podemos formar duas equações -
# x + y = 63 # ------------- (1) total de participantes
# 100x + 25y = 3000 # ---- (2) dinheiro total do prêmio
Resolva a equação (1) para
# x = 63-y #
Substituto
# 100 (63-y) + 25y = 3000 #
# 6300-100a + 25a = 3000 #
# -75y = 3000-6300 = -3300 #
#y = (- 3300) / (- 75) = 44 #
Substituto
# x + 44 = 63 #
# x = 63-44 = 19 #
# x = 19 #
Número de vencedores
Três cartas são selecionadas aleatoriamente de um grupo de 7. Dois dos cartões foram marcados com números vencedores. Qual é a probabilidade de que exatamente 1 das 3 cartas tenha um número vencedor?

Existem 7C_3 maneiras de escolher 3 cartas do baralho. Esse é o número total de resultados. Se você acabar com as 2 cartas não marcadas e 1 marcada: existem 5C_2 maneiras de escolher 2 cartas não marcadas das 5, e 2C_1 maneiras de escolher 1 cartas marcadas da 2. Então a probabilidade é: (5C_2 cdot 2C_1) / ( 7C_3) = 4/7
Três cartas são selecionadas aleatoriamente de um grupo de 7. Dois dos cartões foram marcados com números vencedores. Qual é a probabilidade de que pelo menos uma das três cartas tenha um número vencedor?

Vamos primeiro olhar para a probabilidade de nenhuma carta vencedora: Primeira carta não ganhadora: 5/7 Segunda carta não ganhadora: 4/6 = 2/3 Terceira carta não ganhadora: 3/5 P ("não ganhadora") = cancel5 / 7xx2 / cancel3xxcancel3 / cancel5 = 2/7 P ("pelo menos um vencedor") = 1-2 / 7 = 5/7
Três cartas são selecionadas aleatoriamente de um grupo de 7. Dois dos cartões foram marcados com números vencedores. Qual é a probabilidade de que nenhuma das 3 cartas tenha um número vencedor?

P ("não escolhe um vencedor") = 10/35 Estamos pegando 3 cartas de um pool de 7. Podemos usar a fórmula de combinação para ver o número de maneiras diferentes de fazer isso: C_ (n, k) = ( n!) / ((k!) (nk)!) com n = "população", k = "pega" C_ (7,3) = (7!) / ((3!) (7-3)!) = (7!) / (3! 4!) = (7xx6xx5xx4!) / (3xx2xx4!) = 35 Dessas 35 maneiras, queremos pegar as três cartas que não possuem nenhuma das duas cartas vencedoras. Podemos, portanto, pegar as 2 cartas vencedoras da mesa e ver quantas maneiras podemos escolher delas: C_ (5,3) = (5!) / ((3!) (5-3)