Responda:
Ver abaixo.
Explicação:
e
ou
então finalmente
valores reais
valores complexos
Responda:
# k = + - 2 #
Explicação:
Nós exigimos:
# int_2 ^ k x ^ 5 dx = 0 #
Integrando temos:
# x ^ 6/6 _2 ^ k = 0 #
#:. 1/6 cor (branco) ("" / "") x ^ 6 _2 ^ k = 0 #
#:. 1/6 (k ^ 6-2 ^ 6) = 0 #
#:. (k ^ 3) ^ 2- (2 ^ 3) ^ 2 = 0 #
#:. k ^ 3 = + - 2 ^ 3 #
#:. k = + - 2 # ,
Assumindo que
Agora, dependendo do contexto do problema, pode-se argumentar que
Além disso, observe que
Em primeiro lugar, uma propriedade de integrais definidas é que:
# int_a ^ a f (x) = 0 #
para que possamos estabelecer imediatamente
Em segundo lugar,
# f (-x) = f (x) #
e ter simetria rotacional sobre a origem. como tal, se
# int_ (a) ^ a f (x) = 0 #
para que possamos estabelecer imediatamente
A integração e os cálculos subsequentes, no entanto, provam que estas são as únicas soluções!
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.
Quais são as características do gráfico da função f (x) = (x + 1) ^ 2 + 2? Marque todos que se aplicam. O domínio é todos os números reais. O intervalo é todos os números reais maiores ou iguais a 1. O intercepto y é 3. O gráfico da função é de 1 unidade para cima e
Primeiro e terceiro são verdadeiros, segundo é falso, quarto é inacabado. - O domínio é de fato todos os números reais. Você pode reescrever esta função como x ^ 2 + 2x + 3, que é um polinômio, e como tal tem domínio mathbb {R} O intervalo não é todo o número real maior ou igual a 1, porque o mínimo é 2. Em facto. (x + 1) ^ 2 é uma tradução horizontal (uma unidade à esquerda) da parábola "padrão" x ^ 2, que tem faixa [0, infty]. Quando você adiciona 2, você desloca o gráfico verticalme
Mostre que, para todos os valores de m, a linha reta x (2m-3) + y (3-m) + 1-2m = 0 passa pelo ponto de intersecção de duas linhas fixas.para quais valores de m a determinada linha é dividida os ângulos entre as duas linhas fixas?
M = 2 e m = 0 Resolvendo o sistema de equações x (2 m - 3) + y (3 - m) + 1 - 2 m = 0 x (2 n - 3) + y (3 - n) + 1 - 2 n = 0 para x, y obtemos x = 5/3, y = 4/3 A bissecção é obtida fazendo (declividade reta) (2m-3) / (3-m) = 1-> m = 2 e ( 2m-3) / (3-m) = -1-> m = 0