Responda:
Outro ponto na parábola que é o gráfico da função quadrática é
Explicação:
Dizem-nos que esta é uma função quadrática.
A compreensão mais simples disso é que ela pode ser descrita por uma equação na forma:
#y = ax ^ 2 + bx + c #
e tem um gráfico que é uma parábola com eixo vertical.
Dizem-nos que o vértice está em
Portanto, o eixo é dado pela linha vertical
A parábola é bilateralmente simétrica em torno deste eixo, então a imagem espelhada do ponto
Esta imagem espelhada tem o mesmo
#x = 2 - (5 - 2) = -1 #
Então o ponto é
gráfico {(y- (x-2) ^ 2) ((x-2) ^ 2 + y ^ 2-0,02) (x-2) ((x-5) ^ 2 + (y-9) ^ 2- 0,02) ((x + 1) ^ 2 + (y-9) ^ 2-0,02) = 0 -7,114, 8,686, -2, 11}
O gráfico de uma função quadrática intercepta x-2 e 7/2, como você escreve uma equação quadrática que tem essas raízes?
Encontre f (x) = ax ^ 2 + bx + c = 0 conhecendo as duas raízes reais: x1 = -2 e x2 = 7/2. Dados 2 raízes reais c1 / a1 e c2 / a2 de uma equação quadrática ax2 + bx + c = 0, existem 3 relações: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Soma Diagonal). Neste exemplo, as duas raízes reais são: c1 / a1 = -2/1 e c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. A equação quadrática é: Resposta: 2x ^ 2 - 3x - 14 = 0 (1) Verifique: Encontre as 2 raízes reais de (1) pelo novo Método AC. Equação convertida: x ^ 2 - 3x - 28
Qual afirmação melhor descreve a equação (x + 5) 2 + 4 (x + 5) + 12 = 0? A equação é quadrática na forma porque pode ser reescrita como uma equação quadrática com a substituição u = (x + 5). A equação é quadrática em forma porque quando é expandida,
Como explicado abaixo, a substituição de u irá descrevê-lo como quadrático em u. Para quadrática em x, sua expansão terá a maior potência de x como 2, melhor descreve-a como quadrática em x.
Você precisa de uma solução de álcool a 25%. Na mão, você tem 50 mL de uma mistura de 5% de álcool. Você também tem 35% de mistura de álcool. Quanto da mistura de 35% você precisará adicionar para obter a solução desejada? Eu preciso de ____ mL da solução de 35%
100 ml significa mistura de álcool a 5%, 100 ml de solução contém 5 ml de álcool, então 50 ml de solução conterá (5/100) * 50 = 2,5 ml de álcool. Agora, se misturarmos, x ml de mistura a 35%, podemos dizer, em x ml de mistura, o álcool presente será (35/100) x = 0,35x ml, então, após misturar o volume total da solução será (50 + x) ml e volume total de álcool será (2,5 + 0,35x) ml Agora, dada nova solução deve ter 25% de álcool, o que significa, 25% do volume total da solução será volume de álco