Responda:
Explicação:
Primeiro, para remover o
Em seguida, expanda a equação.
Simplifique a equação combinando termos semelhantes.
Agora você pode resolver
No entanto, se você resolveu assim:
O discriminante de uma equação quadrática é -5. Qual resposta descreve o número e o tipo de soluções da equação: 1 solução complexa 2 soluções reais 2 soluções complexas 1 solução real?
Sua equação quadrática tem 2 soluções complexas. O discriminante de uma equação quadrática só pode nos dar informações sobre uma equação da forma: y = ax ^ 2 + bx + c ou uma parábola. Como o maior grau desse polinômio é 2, ele não deve ter mais de 2 soluções. O discriminante é simplesmente o material sob o símbolo da raiz quadrada (+ -sqrt ("")), mas não o próprio símbolo da raiz quadrada. + -sqrt (b ^ 2-4ac) Se o discriminante, b ^ 2-4ac, for menor que zero (ou seja, qualquer número negati
Como você resolve o abs (2t-3) = t e encontra soluções estranhas?
T = 1 ou t = 3 e apesar das equações de quadratura, nenhuma solução estranha sugeriu a si mesma. O esquadro geralmente introduz soluções estranhas. Vale a pena porque transforma a coisa toda em álgebra simples, eliminando a análise de casos confusa tipicamente associada a uma questão de valor absoluto. (2t-3) ^ 2 = t ^ 2 4t ^ 2 - 12 t + 9 = t ^ 2 3 (t ^ 2 -4t + 3) = 0 (t-3) (t-1) = 0 t = 3 ou t = 1 Estamos em boa forma porque nenhum valor t negativo apareceu, o que certamente é estranho. Vamos verificar esses dois, mas eles devem estar OK. | 2 (3) - 3 | = | 3 | = 3 = t quad
Use o discriminante para determinar o número e o tipo de soluções que a equação possui? x ^ 2 + 8x + 12 = 0 A. nenhuma solução real B. uma solução real C. duas soluções racionais D. duas soluções irracionais
C. duas soluções Racionais A solução para a equação quadrática a * x ^ 2 + b * x + c = 0 é x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In o problema em consideração, a = 1, b = 8 ec = 12 Substituindo, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 ou x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 ex = (-8 - 4) / 2 x = (- 4) / 2 e x = (-12) / 2 x = - 2 e x = -6