Responda:
A função é ímpar.
Explicação:
Se uma função é par, ela satisfaz a condição:
Se uma função é ímpar, ela satisfaz a condição:
No nosso caso, vemos que
Desde a
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.
Seja f (x) = x-1. 1) Verifique se f (x) não é nem ímpar nem impar. 2) Pode f (x) ser escrito como a soma de uma função par e uma função ímpar? a) Se sim, exiba uma solução. Existem mais soluções? b) Se não, prove que é impossível.
Seja f (x) = | x -1 |. Se f fosse par, então f (-x) seria igual a f (x) para todo x. Se f fosse ímpar, então f (-x) seria igual a -f (x) para todo x. Observe que para x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Como 0 não é igual a 2 ou a -2, f não é nem ímpar nem par. Pode ser escrito como g (x) + h (x), onde g é par e h é ímpar? Se isso fosse verdade, então g (x) + h (x) = | x - 1 | Chame essa instrução 1. Substitua x por -x. g (-x) + h (-x) = | -x - 1 | Como g é par e h é ímpar, temos: g (x) - h (x) = | -x - 1 | Chame essa afirmaç&
Prove que se u é um inteiro ímpar, então a equação x ^ 2 + x-u = 0 não tem solução que seja um inteiro?
Sugestão 1: Suponha que a equação x ^ 2 + x-u = 0 com u um inteiro tenha uma solução inteira n. Mostre que você é par. Se n é uma solução, existe um inteiro m tal que x ^ 2 + xu = (xn) (x + m) Onde nm = u e mn = 1 Mas a segunda equação implica que m = n + 1 Agora, ambos m e n são inteiros, então um de n, n + 1 é par e nm = u é par.