Dado que y varia conjuntamente como o cubo de xe a raiz quadrada de w,
Mais uma vez inserindo
y = 128 quando x = 2 e w = 16 na equação (1)
Agora a equação (1) se torna
Inserindo x = 1/2 e w = 64 obtemos
'L varia em conjunto como a raiz quadrada de b, e L = 72 quando a = 8 eb = 9. Encontre L quando a = 1/2 eb = 36? Y varia em conjunto como o cubo de xe a raiz quadrada de w, e Y = 128 quando x = 2 e w = 16. Encontre Y quando x = 1/2 e w = 64?
L = 9 "e" y = 4> "a declaração inicial é" Lpropasqrtb "para converter em uma equação multiplicar por k a constante" "de variação" rArrL = kasqrtb "para encontrar k usar as condições dadas" L = 72 "quando "a = 8" e "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" equação é "cor (vermelho) (bar (ul (| cor (branco) ( 2/2) cor (preto) (L = 3asqrtb) cor (branco) (2/2) |))) "quando" a = 1/2 "e" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 co
Qual é a raiz quadrada de 3 + a raiz quadrada de 72 - a raiz quadrada de 128 + a raiz quadrada de 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sabemos que 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, então sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sabemos que 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, so sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sabemos que 128 = 2 ^ 7 , assim sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplificando 7sqrt (3) - 2sqrt (2)
Qual é a raiz quadrada de 7 + raiz quadrada de 7 ^ 2 + raiz quadrada de 7 ^ 3 + raiz quadrada de 7 ^ 4 + raiz quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) A primeira coisa que podemos fazer é cancelar as raízes daquelas com os poderes pares. Desde: sqrt (x ^ 2) = x e sqrt (x ^ 4) = x ^ 2 para qualquer número, podemos apenas dizer que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Agora, 7 ^ 3 pode ser reescrito como 7 ^ 2 * 7, e que 7 ^ 2 pode sair da raiz! O mesmo se aplica a 7 ^ 5, mas é reescrito como 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 4