Qual é a forma do vértice de y = -4x ^ 2-x-3?

Qual é a forma do vértice de y = -4x ^ 2-x-3?
Anonim

Responda:

# y = -4 (x + 1/8) ^ 2-47 / 16 #

Explicação:

Comece agrupando os termos que envolvem # x # juntos.

#y = (- 4x ^ 2-x) -3 #

Fator fora #-4# de # x # termos.

# y = -4 (x ^ 2 + 1 / 4x) -3 #

Complete o quadrado. Usando a fórmula # (b / 2) ^ 2 # Nós temos #((-1/4)/2)^2=(-1/8)^2=1/64#.

Agora sabemos que para completar o quadrado adicionando #1/64# dentro dos parênteses. Porque estamos adicionando #1/64#também devemos subtrair o valor pelo qual ele alterou o problema.

# y = -4 (x ^ 2 + 1 / 4x + 1/6464 /) - 3 + 1/16 #

Desde o #1/16# está entre parênteses, é multiplicado por #-4#, significando globalmente, altera o problema #-1/16#. Para desfazer essa alteração, adicionamos #1/16# fora dos parênteses.

Agora que completamos o quadrado, os termos envolvendo # x # pode ser fatorado assim:

# y = -4 (x + 1/8) ^ 2-47 / 16 #

A equação é agora escrita em forma de vértice.