Responda:
A forma do vértice seria
Explicação:
A equação para a forma do vértice é dada por:
Então, substituindo o vértice
Então a forma do vértice seria
Suponha que uma parábola tenha vértice (4,7) e também passe pelo ponto (-3,8). Qual é a equação da parábola na forma de vértice?
Na verdade, existem duas parábolas (de forma de vértice) que atendem às suas especificações: y = 1/49 (x-4) ^ 2 + 7 e x = -7 (y-7) ^ 2 + 4 Existem duas formas de vértice: y = a (xh) ^ 2 + k e x = a (yk) ^ 2 + h onde (h, k) é o vértice e o valor de "a" pode ser encontrado usando outro ponto. Não nos é dado nenhum motivo para excluir uma das formas, portanto, substituímos o vértice dado em ambos: y = a (x-4) ^ 2 + 7 e x = a (y-7) ^ 2 + 4 Resolva para ambos os valores de um usando o ponto (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 e -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7)
Uma bola com uma massa de 5 kg movendo-se a 9 m / s atinge uma bola parada com uma massa de 8 kg. Se a primeira bola parar de se mover, com que velocidade a segunda bola está se movendo?
A velocidade da segunda bola após a colisão é = 5.625ms ^ -1 Temos conservação do momento m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 A massa da primeira bola é m_1 = 5kg A velocidade da primeira bola antes da colisão é u_1 = 9ms ^ -1 A massa da segunda bola é m_2 = 8kg A velocidade da segunda bola antes da colisão é u_2 = 0ms ^ -1 A velocidade da primeira bola após a colisão é v_1 = 0ms ^ -1 Portanto, 5 * 9 + 8 * 0 = 5 * 0 + 8 * v_2 8v_2 = 45 v_2 = 45/8 = 5,625ms ^ -1 A velocidade da segunda bola após a colisão é v_2 = 5.625ms ^ -1
Uma bola com uma massa de 9 kg movendo-se a 15 m / s atinge uma bola parada com uma massa de 2 kg. Se a primeira bola parar de se mover, com que velocidade a segunda bola está se movendo?
V = 67,5 m / s soma P_b = soma P_a "soma dos momentos antes do evento, deve ser igual soma dos momentos após o evento" 9 * 15 + 0 = 0 + 2 * v 135 = 2 * vv = 135/2 v = 67,5 m / s