Vamos, o vetor de velocidade é
Assim,
E o vetor de posição é
Então, o momento angular sobre a origem é
Então, a magnitude é
O vetor de posição de A tem as coordenadas cartesianas (20,30,50). O vetor de posição de B tem as coordenadas cartesianas (10,40,90). Quais são as coordenadas do vetor de posição de A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
A velocidade de uma partícula que se move ao longo do eixo x é dada como v = x ^ 2 - 5x + 4 (em m / s), onde x denota a coordenada x da partícula em metros. Encontre a magnitude da aceleração da partícula quando a velocidade da partícula é zero?
Uma velocidade determinada v = x ^ 2 5x + 4 Aceleração a - = (dv) / dt: .a = d / dt (x ^ 2 5x + 4) => a = (2x (dx) / dt 5 (dx) / dt) Também sabemos que (dx) / dt- = v => a = (2x 5) v em v = 0 acima da equação se torna a = 0
Uma partícula se move ao longo do eixo x de modo que no tempo t sua posição é dada por s (t) = (t + 3) (t 1) ^ 3, t> 0. Para quais valores de t é a velocidade do partícula diminuindo?
0