Responda:
A equação da linha que passa pelos pontos
Explicação:
Aqui está o link para outra resposta que escrevi para um problema semelhante:
Eu não tenho certeza de qual forma de equação você quer (ex: ponto-inclinação / padrão / inclinação-interceptação), então eu vou apenas fazer a forma de declive de pontos.
A forma do declive do ponto é
Sabemos que dois pontos na linha são
A primeira coisa que queremos fazer é encontrar a inclinação.
Para encontrar inclinação, nós fazemos
Então vamos resolver isso!
Agora, precisamos de um conjunto de coordenadas a partir do dado. Vamos usar o ponto
Então nossa equação da linha é
Simplificado:
Responda:
Explicação:
# "a equação de uma linha em" cor (azul) "forma de interceptação de inclinação" # é.
# • cor (branco) (x) y = mx + b #
# "onde m é a inclinação e b a interceptação de y" #
# "para calcular m use a" gradiente de cor (azul) "formula" #
#color (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (m = (y_2-y_1) / (x_2-x_1)) cor (branco) (2/2) |))) #
# "let" (x_1, y_1) = (- 3,4) "e" (x_2, y_2) = (- 6,17) #
# rArrm = (17-4) / (- 6 - (- 3)) = 13 / (- 3) = - 13/3 #
# rArry = -13 / 3 + blarrcolor (azul) "é a equação parcial" #
# "para encontrar b use um dos dois pontos indicados" #
# "usando" (-6,17) #
# 17 = 26 + brArrb = -9 #
# rArry = -13 / 3x-9larrcolor (vermelho) "em forma de interseção de inclinação" #
O par ordenado (2, 10), é uma solução de uma variação direta, como você escreve a equação de variação direta, então graficamente sua equação e mostra que a inclinação da linha é igual à constante de variação?
Y = 5x "dado" ypropx "then" y = kxlarrcolor (azul) "equação para variação direta" "onde k é a constante de variação" "para encontrar k use o ponto de coordenada dado" (2,10) y = kxrArrk = y / x = 10/2 = 5 "equação é" cor (vermelho) (barra (ul (| cor (branco) (2/2) cor (preto) (y = 5x) cor (branco) (2/2) |))) y = 5x "tem a forma" y = mxlarrcolor (azul) "m é a inclinação" rArry = 5x "é uma linha reta passando pela origem" "com declive m = 5" graph {5x [-10 ,
Tomas escreveu a equação y = 3x + 3/4. Quando Sandra escreveu sua equação, eles descobriram que sua equação tinha todas as mesmas soluções que a equação de Tomas. Qual equação poderia ser da Sandra?
4y = 12x +3 12x-4y +3 = 0 Uma equação pode ser dada em muitas formas e ainda significa o mesmo. y = 3x + 3/4 "" (conhecida como a forma inclinação / intercepção). Multiplicada por 4 para remover a fração, obtém-se: 4y = 12x +3 "" rarr 12x-4y = -3 "" (forma padrão) 12x- 4y +3 = 0 "" (forma geral) Estas são todas da forma mais simples, mas também poderíamos ter variações infinitas delas. 4y = 12x + 3 poderia ser escrito como: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 etc
Uma linha passa pelos pontos (2,1) e (5,7). Outra linha passa pelos pontos (-3,8) e (8,3). As linhas são paralelas, perpendiculares ou não?
Nem paralelo nem perpendicular Se o gradiente de cada linha é o mesmo, então eles são paralelos. Se o gradiente de é o inverso negativo do outro, então eles são perpendiculares entre si. Isto é: um é m "e o outro é" -1 / m Deixe a linha 1 ser L_1 Deixe a linha 2 ser L_2 Deixe o gradiente da linha 1 ser m_1 Deixe o gradiente da linha 2 ser m_2 "gradiente" = ("Alterar y -axis ") / (" Alteração no eixo x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ............. ...