Responda:
A distância é
Explicação:
A distância entre
Daí a distância entre
A intensidade de um sinal de rádio da estação de rádio varia inversamente como o quadrado da distância da estação. Suponha que a intensidade seja de 8000 unidades a uma distância de 2 milhas. Qual será a intensidade a uma distância de 6 milhas?
(Apr.) 888,89 "unidade". Deixe eu, e d resp. denotar a intensidade do sinal de rádio e a distância em milhas) do local da estação de rádio. Nos é dado que, eu prop 1 / d ^ 2 rArr I = k / d ^ 2, ou, Id ^ 2 = k, kne0. Quando eu = 8000, d = 2:. k = 8000 (2) ^ 2 = 32000. Daí, Id ^ 2 = k = 32000 Agora, para encontrar I ", quando" d = 6:. I = 32000 / d ^ 2 = 32000/36 ~ ~ 888,89 "unidade".
A escola de Krisha fica a 64 km de distância. Ela dirigiu a uma velocidade de 40 mph (milhas por hora) durante a primeira metade da distância, depois a 60 mph durante o resto da distância. Qual foi a velocidade média dela durante toda a viagem?
V_ (avg) = 48 "mph" Vamos dividir isso em dois casos, o primeiro e o segundo tempo de viagem Ela dirige a distância s_1 = 20, com a velocidade v_1 = 40 Ela dirige a distância s_2 = 20, com a velocidade v_2 = 60 O tempo para cada caso deve ser dado por t = s / v O tempo que leva para conduzir a primeira metade: t_1 = s_1 / v_1 = 20/40 = 1/2 O tempo que leva para conduzir a segunda metade: t_2 = s_2 / v_2 = 20/60 = 1/3 A distância total e o tempo devem ser respectivamente s_ "total" = 40 t_ "total" = t_1 + t_2 = 1/2 + 1/3 = 5/6 A velocidade média v_ ( avg) = s_ "total&qu
Shawna notou que a distância de sua casa até o oceano, que fica a 40 milhas, era um quinto da distância de sua casa até as montanhas. Como você escreve e resolve uma equação de divisão para encontrar a distância entre a casa de Shawna e as montanhas?
A equação que você quer é 40 = 1/5 xe a distância para as montanhas é de 200 milhas. Se deixarmos x representar a distância para as montanhas, o fato de que 40 milhas (para o oceano) é um quinto da distância para as montanhas é escrito 40 = 1/5 x Observe que a palavra "de" geralmente se traduz em " multiplique "em álgebra. Multiplique cada lado por 5: 40xx5 = x x = 200 milhas