Responda:
Comprimento dos lados originais:
Explicação:
Deixei
Somos informados
Assim sendo
Aplicando a fórmula quadrática:
(com um pouco de aritmética)
Nós temos:
mas desde que o comprimento de um lado deve ser
só
Os dois lados de um triângulo têm 6 me 7 m de comprimento e o ângulo entre eles aumenta a uma taxa de 0,07 rad / s. Como você encontra a taxa na qual a área do triângulo está aumentando quando o ângulo entre os lados do comprimento fixo é pi / 3?
As etapas gerais são: Desenhe um triângulo consistente com as informações fornecidas, rotulando informações relevantes Determine quais fórmulas fazem sentido na situação (Área do triângulo inteiro com base em dois lados de comprimento fixo e relações trigonométricas de triângulos retângulos para a altura variável) quaisquer variáveis desconhecidas (altura) de volta para a variável (teta) que corresponde à única taxa dada ((d teta) / (dt)) Faça algumas substituições em uma fórmula "principal&quo
Originalmente, um retângulo era duas vezes maior que largo. Quando 4m foram adicionados ao seu comprimento e 3m subtraídos de sua largura, o retângulo resultante tinha uma área de 600m ^ 2. Como você encontra as dimensões do novo retângulo?
Largura original = 18 metros Comprimento original = 36 mtres O truque com esse tipo de pergunta é fazer um esboço rápido. Dessa forma, você pode ver o que está acontecendo e elaborar um método de solução. Conhecido: área é "largura" xx "comprimento" => 600 = (w-3) (2w + 4) => 600 = 2w ^ 2 + 4w-6w-12 Subtraia 600 de ambos os lados => 2w ^ 2-2w -612 = 0 => (2w-36) (w + 17) = 0 => w = -17 Não é lógico que um comprimento seja negativo neste contexto, portanto w = 17 w = 18 => L = 2xx18 = 36 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Prove a seguinte declaração. Seja ABC qualquer triângulo retângulo, o ângulo reto no ponto C. A altitude traçada de C até a hipotenusa divide o triângulo em dois triângulos retângulos semelhantes uns aos outros e ao triângulo original?
Ver abaixo. De acordo com a Questão, DeltaABC é um triângulo retângulo com / _C = 90 ^ @, e CD é a altitude para a hipotenusa AB. Prova: Vamos supor que / _ABC = x ^ @. Então, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Agora, CD perpendicular AB. Então, angleBDC = angleADC = 90 ^ @. Em DeltaCBD, angleBCD = 180 ^ @ - angleBDC - angleCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Similarmente, angleACD = x ^ @. Agora, em DeltaBCD e DeltaACD, ângulo CBD = ângulo ACD e ângulo BDC = angleADC. Assim, por AA Criteria of Similarity, DeltaBCD ~ = DeltaACD. Da mesma forma, podemos encont