Vamos lidar com a segunda parte primeiro:
que valores de
Considere dois casos:
Caso 1:
Caso 2:
E se
e, portanto, deve ser incluído
Observe que os resultados seriam bem diferentes se a condição tivesse sido
Uma maneira de pensar sobre Numeros reais é pensar neles como distâncias, medida comparável de comprimento.
Os números podem ser considerados uma coleção em expansão de conjuntos:
-
Números naturais (ou contando números): 1, 2, 3, 4, …
-
Números naturais e zero
-
Inteiros: números naturais, zero e versão negativa de números naturais ….- 4, -3, -2, -1, 0, 1, 2, 3, 4, ….
-
Números racionais: inteiros mais todos os valores que podem ser expressos como a proporção de dois inteiros (frações).
-
Números reais: Números racionais mais números irracionais em que os números irracionais são valores que existem como comprimentos, mas não podem ser expressos como frações (por exemplo
#sqrt (2) # ). -
Números complexos: números reais mais números com componentes que incluem
#sqrt (-1) # (chamado números imaginários).
O discriminante de uma equação quadrática é -5. Qual resposta descreve o número e o tipo de soluções da equação: 1 solução complexa 2 soluções reais 2 soluções complexas 1 solução real?
Sua equação quadrática tem 2 soluções complexas. O discriminante de uma equação quadrática só pode nos dar informações sobre uma equação da forma: y = ax ^ 2 + bx + c ou uma parábola. Como o maior grau desse polinômio é 2, ele não deve ter mais de 2 soluções. O discriminante é simplesmente o material sob o símbolo da raiz quadrada (+ -sqrt ("")), mas não o próprio símbolo da raiz quadrada. + -sqrt (b ^ 2-4ac) Se o discriminante, b ^ 2-4ac, for menor que zero (ou seja, qualquer número negati
Você precisa de uma solução de álcool a 25%. Na mão, você tem 50 mL de uma mistura de 5% de álcool. Você também tem 35% de mistura de álcool. Quanto da mistura de 35% você precisará adicionar para obter a solução desejada? Eu preciso de ____ mL da solução de 35%
100 ml significa mistura de álcool a 5%, 100 ml de solução contém 5 ml de álcool, então 50 ml de solução conterá (5/100) * 50 = 2,5 ml de álcool. Agora, se misturarmos, x ml de mistura a 35%, podemos dizer, em x ml de mistura, o álcool presente será (35/100) x = 0,35x ml, então, após misturar o volume total da solução será (50 + x) ml e volume total de álcool será (2,5 + 0,35x) ml Agora, dada nova solução deve ter 25% de álcool, o que significa, 25% do volume total da solução será volume de álco
Use o discriminante para determinar o número e o tipo de soluções que a equação possui? x ^ 2 + 8x + 12 = 0 A. nenhuma solução real B. uma solução real C. duas soluções racionais D. duas soluções irracionais
C. duas soluções Racionais A solução para a equação quadrática a * x ^ 2 + b * x + c = 0 é x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In o problema em consideração, a = 1, b = 8 ec = 12 Substituindo, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 ou x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 ex = (-8 - 4) / 2 x = (- 4) / 2 e x = (-12) / 2 x = - 2 e x = -6