Responda:
Porque a respiração celular pode ser vista como "respiração" de uma célula.
Explicação:
Spirare é latim para "respirar". Respirar para os seres humanos é inalar oxigênio e exalar dióxido de carbono, e isso é bem semelhante ao que acontece no nível celular.
Respiração celular é o processo no qual as moléculas de oxigênio e alimentos são convertidas em energia química. Neste processo, o dióxido de carbono e outros resíduos são formados.
Assim, a célula absorve oxigênio e excreta dióxido de carbono, que é muito semelhante à respiração.
O quarto termo de um AP é igual a três vezes que o sétimo termo excede o dobro do terceiro termo por 1. Encontre o primeiro termo e a diferença comum?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Substituindo valores na equação (1), a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Substituindo valores na equação (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 - a - d = 1 a + d = -1. ........... (4) Ao resolver as equações (3) e (4) simultaneamente, obtemos d = 2/13 a = -15/13
O segundo termo de uma sequência aritmética é 24 e o quinto termo é 3. Qual é o primeiro termo e a diferença comum?
Primeiro termo 31 e diferença comum -7 Deixe-me começar dizendo como você pode realmente fazer isso, então mostrando como você deve fazê-lo ... Ao passar do segundo ao quinto termo de uma sequência aritmética, adicionamos a diferença comum Três vezes. Em nosso exemplo, isso resulta em passar de 24 para 3, uma mudança de -21. Então, três vezes a diferença comum é -21 e a diferença comum é -21/3 = -7 Para passar do segundo para o primeiro, precisamos subtrair a diferença comum. Então o primeiro termo é 24 - (- 7) = 31 Entã
Qual é a raiz quadrada de 7 + raiz quadrada de 7 ^ 2 + raiz quadrada de 7 ^ 3 + raiz quadrada de 7 ^ 4 + raiz quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) A primeira coisa que podemos fazer é cancelar as raízes daquelas com os poderes pares. Desde: sqrt (x ^ 2) = x e sqrt (x ^ 4) = x ^ 2 para qualquer número, podemos apenas dizer que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Agora, 7 ^ 3 pode ser reescrito como 7 ^ 2 * 7, e que 7 ^ 2 pode sair da raiz! O mesmo se aplica a 7 ^ 5, mas é reescrito como 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 4