Qual é a velocidade instantânea de um objeto em movimento de acordo com f (t) = (t ^ 2, tcos (t- (5pi) / 4)) em t = (pi) / 3?

Qual é a velocidade instantânea de um objeto em movimento de acordo com f (t) = (t ^ 2, tcos (t- (5pi) / 4)) em t = (pi) / 3?
Anonim

Responda:

#v (pi / 3) = 1 / 3sqrt (4pi ^ 2 + 9cos ^ 2 (pi / 12) + pisin ^ 2 (pi / 12) + 6picos (pi / 12) sin (pi / 12)) #

Explicação:

A equação #f (t) = (t ^ 2; tcos (t- (5pi) / 4)) # dá-lhe as coordenadas do objeto em relação ao tempo:

#x (t) = t ^ 2 #

#y (t) = tcos (t (5pi) / 4)

Encontrar #v (t) # você precisa encontrar #v_x (t) # e #v_y (t) #

#v_x (t) = (dx (t)) / dt = (dt ^ 2) / dt = 2t #

#v_y (t) = (d (tcos (t- (5pi) / 4))) / dt = cos (t- (5pi) / 4) -tsina (t- (5pi) / 4)

Agora você precisa substituir # t # com # pi / 3 #

#v_x (pi / 3) = (2pi) / 3 #

#v_y (pi / 3) = cos (pi / 3- (5pi) / 4) -pi / 3 cdot sin (pi / 3- (5pi) / 4)

# = cos ((4pi-15pi) / 12) -pi / 3 cdot sin ((4pi-15pi) / 12) #

# = cos ((- 11pi) / 12) -pi / 3 cdot sen ((- 11pi) / 12) #

# = cos (pi / 12) + pi / 3 cdot sin (pi / 12) #

Sabendo que # v ^ 2 = v_x ^ 2 + v_y ^ 2 # você encontra:

#v (pi / 3) = sqrt (((2pi) / 3) ^ 2 + (cos (pi / 12) + pi / 3 cdot sen (pi / 12)) ^ 2) #

# = sqrt ((4pi ^ 2) / 9 + cos ^ 2 (pi / 12) + pi ^ 2/9 cdot sin ^ 2 (pi / 12) + (2pi) / 3 cdot cos (pi / 12) sin (pi / 12)) #

# = 1 / 3sqrt (4pi ^ 2 + 9cos ^ 2 (pi / 12) + pisin ^ 2 (pi / 12) + 6picos (pi / 12) sin (pi / 12)) #