Responda:
Explicação:
k é real
Mostre que cos² / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Estou um pouco confuso se eu fizer Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), ele vai se tornar negativo como cos (180 ° -teta) = - costheta em o segundo quadrante. Como faço para provar a questão?
Por favor veja abaixo. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sen ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
O gráfico da função f (x) = (x + 2) (x + 6) é mostrado abaixo. Qual afirmação sobre a função é verdadeira? A função é positiva para todos os valores reais de x, onde x> -4. A função é negativa para todos os valores reais de x onde –6 <x <–2.
A função é negativa para todos os valores reais de x onde –6 <x <–2.
Quais são as características do gráfico da função f (x) = (x + 1) ^ 2 + 2? Marque todos que se aplicam. O domínio é todos os números reais. O intervalo é todos os números reais maiores ou iguais a 1. O intercepto y é 3. O gráfico da função é de 1 unidade para cima e
Primeiro e terceiro são verdadeiros, segundo é falso, quarto é inacabado. - O domínio é de fato todos os números reais. Você pode reescrever esta função como x ^ 2 + 2x + 3, que é um polinômio, e como tal tem domínio mathbb {R} O intervalo não é todo o número real maior ou igual a 1, porque o mínimo é 2. Em facto. (x + 1) ^ 2 é uma tradução horizontal (uma unidade à esquerda) da parábola "padrão" x ^ 2, que tem faixa [0, infty]. Quando você adiciona 2, você desloca o gráfico verticalme