Responda:
Explicação:
Este é um método de estrutura de tópicos. A rotina de alguns dos trabalhos foi feita por computador.
Comprimento do arco
e
Para agora
assim
Comprimento do arco
O PERÍMETRO do trapézio isósceles ABCD é igual a 80cm. O comprimento da linha AB é 4 vezes maior que o comprimento de uma linha CD que é 2/5 o comprimento da linha BC (ou as linhas que são as mesmas em comprimento). Qual é a área do trapézio?
A área do trapézio é de 320 cm ^ 2. Deixe o trapézio ser como mostrado abaixo: Aqui, se assumirmos lado menor CD = a e maior lado AB = 4a e BC = a / (2/5) = (5a) / 2. Como tal BC = AD = (5a) / 2, CD = ae AB = 4a Assim, o perímetro é (5a) / 2xx2 + a + 4a = 10a Mas o perímetro é de 80 cm. Portanto, a = 8 cm. e dois lados paralelos mostrados como aeb são 8 cm. e 32 cm. Agora, desenhamos perpendiculares de C e D para AB, que formam dois triângulos retos iguais, cuja hipotenusa é 5 / 2xx8 = 20 cm. e base é (4xx8-8) / 2 = 12 e, portanto, sua altura é sqrt (20 ^ 2-
Qual é o comprimento do arco subentendido pelo ângulo central de 240 ^ circ, quando esse arco está localizado no Círculo da Unidade?
O comprimento do arco é de 4,19 (2dp) de unidade. A circunferência do círculo unitário (r = 1) é 2 * pi * r = 2 * pi * 1 = 2 * unidade pi O comprimento do arco subten- dido pelo ângulo central de 240 ^ 0 é l_a = 2 * pi * 240/360 Unidade de ~~ 4,19 (2dp). [Ans]
Mostre que, (1 + cos teta + i * sen teta) ^ n + (1 + cos teta - i * sin teta) ^ n = 2 ^ (n + 1) * (cos teta / 2) ^ n * cos ( n * theta / 2)?
Por favor veja abaixo. Seja 1 + costheta + isintheta = r (cosalfa + isinalpha), aqui r = sqrt ((1 + costheta) ^ 2 + sen ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (teta / 2) ) -2) = 2cos (teta / 2) e tanalfa = sineta / (1 + costheta) == (2sina (teta / 2) cos (teta / 2)) / (2cos ^ 2 (teta / 2)) = tan (theta / 2) ou alpha = theta / 2 então 1 + costheta-isintheta = r (cos (-alfa) + isin (-alfa)) = r (cosalpha-isinalpha) e podemos escrever (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n usando o teorema de DE MOivre como r ^ n (cosnalpha + isinalpha + cosnalpha-isinalpha) = 2r ^ ncosnalpha = 2 * 2