Responda:
Explicação:
Responda:
Explicação:
O primeiro passo é fatorar o denominador.
# x ^ 2 + 6x = x (x + 6) # Como esses fatores são lineares, os numeradores das frações parciais serão constantes, digamos A e B.
portanto:
# (x + 1) / (x (x + 6)) = A / x + B / (x + 6) # multiplicar por x (x + 6)
x + 1 = A (x + 6) + Bx ……………………………….. (1)
O objetivo agora é encontrar o valor de A e B. Note que se x = 0. o termo com B será zero e se x = -6 o termo com A será zero.
seja x = 0 em (1): 1 = 6A
#rArr A = 1/6 # seja x = -6 em (1): -5 = -6B
#rArr B = 5/6 #
#rArr (x + 1) / (x ^ 2 + 6x) = (1/6) / x + (5/6) / (x + 6) # Integral pode ser escrito:
# 1 / 6int (dx) / x + 5 / 6int (dx) / (x + 6) #
# = 5 / 6ln | x | + 5 / 6n | x + 6 | + c #
Como você integra int 1 / (x ^ 2 (2x-1)) usando frações parciais?
2ln | 2x-1 | -2ln | x | + 1 / x + C Precisamos encontrar A, B, C tal que 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) para todo x. Multiplique ambos os lados por x ^ 2 (2x-1) para obter 1 = Ax (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Ax + 2Bx-B + Cx ^ 2 1 = (2A + C) x ^ 2 + (2B-A) xB Os coeficientes de equação nos dão {(2A + C = 0), (2B-A = 0), (- B = 1):} E assim temos A = -2, B = -1, C = 4. Substituindo isso na equação inicial, obtemos 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 Agora, integre-o termo por termo int 4 / (2x-1) dx-int 2 / x dx-int 1 / x ^ 2 dx para obter 2ln | 2x-1 | -2ln
Como você integra int (x-9) / ((x + 3) (x-6) (x + 4)) usando frações parciais?
Você precisa decompor (x-9) / ((x + 3) (x-6) (x + 4)) como uma fração parcial. Você está procurando por a, b, c em RR tal que (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x -6) + c / (x + 4). Eu vou te mostrar como encontrar um, porque bec são encontrados exatamente da mesma maneira. Você multiplica ambos os lados por x + 3, isso fará com que ele desapareça do denominador do lado esquerdo e faça com que ele apareça ao lado de b e c. (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x-6) + c / (x + 4) iff (x -9) / ((x-6) (x + 4)) = a + (b (x + 3)) / (x-6) + (
Como você integra int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) usando frações parciais?
Int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = 2ln (x-1) + 2ln (x + 1) -2 / (x + 1) + C_o Configure a equação para resolver as variáveis A, B, C int (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) dx = int (A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2) dx Vamos resolver para A, B, C primeiro (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ) ^ 2) = A / (x-1) + B / (x + 1) + C / (x + 1) ^ 2 LCD = (x-1) (x + 1) ^ 2 (4x ^ 2 + 6x -2) / ((x-1) (x + 1) ^ 2) = (A (x + 1) ^ 2 + B (x ^ 2-1) + C (x-1)) / ((x- 1) (x + 1) ^ 2) Simplifique (4x ^ 2 + 6x-2) / ((x-1) (x + 1) ^ 2) = (A (x ^ 2 + 2x + 1) + B ( x ^ 2-1) + C (x-1)) / ((x-1) (x + 1) ^ 2) (4