Responda:
Ver abaixo
Explicação:
Uma transformação
# T (v_1 + v_2) = T (v_1) + T (v_2) # para cada# v_1, v_2 in V # # T (cv) = cT (v) # para cada#v in V # e todo escalar# c #
Note que a segunda propriedade assume que
Quando você deriva um polinômio, você diminui seu grau
Se você quer o grau dois polinômio
Com isso dito, vamos identificar o espaço polinomial de grau
Vamos provar a primeira propriedade: vamos supor que temos os polinômios
e
Isso significa que
(Apliquei duas vezes a regra de potência para derivação: a segunda derivada
Agora vamos computar
Similarmente,
Se você somar essa expressão, você pode ver que temos
A segunda propriedade é mostrada de maneira similar: dado um polinômio
nós temos, para qualquer número real
sua segunda derivada é assim
que novamente é o mesmo que computação
A Estação A e a Estação B estavam a 70 milhas de distância. Às 13:36, um ônibus partiu da Estação A para a Estação B a uma velocidade média de 25 mph. Às 14:00, outro ônibus partiu da Estação B para a Estação A a uma velocidade constante de 35 km / h.
Os ônibus passam uns aos outros às 15:00 hrs. Intervalo de tempo entre 14:00 e 13:36 = 24 minutos = 24/60 = 2/5 horas. O ônibus da estação A avançado em 2/5 horas é 25 * 2/5 = 10 milhas. Então ônibus da estação A e da estação B são d = 70-10 = 60 milhas à parte às 14:00 hrs. A velocidade relativa entre eles é s = 25 + 35 = 60 milhas por hora. Eles levarão tempo t = d / s = 60/60 = 1 hora quando passarem um pelo outro. Assim, os ônibus passam uns aos outros às 14: 00 + 1:; 00 = 15: 00 hrs [Ans]
Um avião voando horizontalmente a uma altitude de 1 mi e velocidade de 500mi / h passa diretamente sobre uma estação de radar. Como você encontra a taxa na qual a distância do avião até a estação está aumentando quando está a 2 milhas de distância da estação?
Quando o avião está a 2 m de distância da estação de radar, a taxa de aumento de sua distância é de aproximadamente 433mi / h. A imagem a seguir representa nosso problema: P é a posição do avião R é a posição da estação de radar V é o ponto localizado verticalmente da estação de radar na altura do avião h é a altura do avião d é a distância entre o avião e a estação de radar x é a distância entre o plano e o ponto V Como o avião voa horizontalmente, podemos concluir que o PVR
A função f (x) = sin (3x) + cos (3x) é o resultado de séries de transformações, sendo a primeira uma tradução horizontal da função sin (x). Qual destas descreve a primeira transformação?
Podemos obter o gráfico de y = f (x) de ysinx aplicando as seguintes transformações: uma tradução horizontal de pi / 12 radianos para a esquerda, um trecho ao longo de Ox com um fator de escala de 1/3 unidades por trecho ao longo de Oy com um fator de escala de unidades sqrt (2) Considere a função: f (x) = sen (3x) + cos (3x) Suponhamos que podemos escrever essa combinação linear de seno e cosseno como uma função senoidal de fase única deslocada, isto é, suponha temos: f (x) - = Asin (3x + alfa) = A {sin3xcosalpha + cos3xsinalpha} = Acosalpha sin3x + Asi