Responda:
Explicação:
Esse é um problema de regra de cadeia e produto razoavelmente padrão.
A regra da cadeia afirma que:
A regra do produto afirma que:
Combinando estes dois, podemos descobrir
(Porque
Quais são os pontos extremos e de sela de f (x) = 2x ^ 2 lnx?
O domínio da definição de: f (x) = 2x ^ 2lnx é o intervalo x em (0, + oo). Avalie a primeira e a segunda derivadas da função: (df) / dx = 4xlnx + 2x ^ 2 / x = 2x (1 + 2lnx) (d ^ 2f) / dx ^ 2 = 2 (1 + 2lnx) + 2x * 2 / x = 2 + 4lnx + 4 = 6 + lnx Os pontos críticos são as soluções de: f '(x) = 0 2x (1 + 2lnx) = 0 e como x> 0: 1 + 2lnx = 0 lnx = -1 / 2 x = 1 / sqrt (e) Neste ponto: f '' (1 / sqrte) = 6-1 / 2 = 11/2> 0, então o ponto crítico é um mínimo local. Os pontos de sela são as soluções de: f '' (x) = 0 6 + lnx
Qual é a derivada de lnx ^ lnx?
= 2 (ln x) / x (lnx ^ lnx) ^ '= (ln x lnx) ^' = (ln ^ 2 x) ^ '= 2 ln x * 1 / x
Qual é a derivada de f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?
Use regra de cotação e regra de cadeia. A resposta é: f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) Esta é uma versão simplificada. Veja Explicação para observar até que ponto pode ser aceito como um derivado. f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * (lnx) ') * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 Nesta f