Responda:
Explicação:
O primeiro e o segundo termos de uma sequência geométrica são respectivamente o primeiro e o terceiro termos de uma sequência linear. O quarto termo da sequência linear é 10 e a soma dos seus cinco primeiros termos é 60 Encontre os primeiros cinco termos da sequência linear?
{16, 14, 12, 10, 8} Uma sequência geométrica típica pode ser representada como c_0a, c_0a ^ 2, cdots, c_0a ^ k e uma sequência aritmética típica como c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chamando c_0 a como o primeiro elemento para a sequência geométrica que temos {(c_0 a ^ 2 = c_0a + 2Delta -> "Primeiro e segundo de GS são o primeiro e o terceiro de um LS"), (c_0a + 3Delta = 10- > "O quarto termo da seqüência linear é 10"), (5c_0a + 10Delta = 60 -> "A soma do seu primeiro cinco termo é 60"):} Resolven
Como você usaria as fórmulas para diminuir poderes para reescrever a expressão em termos da primeira potência do cosseno? cos ^ 4 (x) sin ^ 4 (x)
4x * sin ^ 4x = 1/128 [3-4cos4x + cos8x] rarrcos ^ 4x * sen ^ 4x = 1/16 [(2sinx * cosx) ^ 4] = 1/16 [sen ^ 4 (2x)] = 1/64 [(2sin ^ 2 (2x)] ^ 2 = 1/64 [1-cos4x] ^ 2 = 1/64 [1-2cos4x + cos ^ 2 (4x)] = 1/128 [2-4cos4x + 2cos ^ 2 (4x)] = 1/128 [2-4cos4x + 1 + cos8x] = 1/128 [3-4cos4x + cos8x]
Use as identidades redutoras de poder para escrever sin ^ 2xcos ^ 2x em termos da primeira potência do cosseno?
Sin ^ 2xcos ^ 2x = (1-cos (4x)) / 8 sen ^ 2x = (1-cos (2x)) / 2 cos ^ 2x = (1 + cos (2x)) / 2 sen ^ 2xcos ^ 2x = ((1 + cos (2x)) (1-cos (2x))) / 4 = (1-cos ^ 2 (2x)) / 4 cos ^ 2 (2x) = (1 + cos (4x)) / 2 (1- (1 + cos (4x)) / 2) / 4 = (2- (1 + cos (4x))) / 8 = (1 cos (4x)) / 8