Responda:
A população humana cresceu exponencialmente, atingindo uma porcentagem máxima de 2,2 por ano em 1962-1963. A taxa anual de crescimento da população mundial é agora de 1,1%.
Explicação:
Taxa de crescimento da população humana aumentou principalmente devido ao avanço da ciência médica e logo após a descoberta de antibióticos. Em meados do século XX, a taxa de mortalidade caiu repentinamente, incluindo a taxa de mortalidade infantil, mas a taxa de natalidade permaneceu muito alta como antes.
O avanço na ciência e tecnologia também significou a disponibilidade de mais alimentos no prato, melhor condição sanitária, melhor serviço de maternidade. Tudo isso contribuiu para o crescimento populacional.
Nos países em desenvolvimento, a falta de educação e a pobreza são obstáculos para alcançar uma taxa de crescimento desejável e menor.
A função p = n (1 + r) ^ t dá a população atual de uma cidade com uma taxa de crescimento de r, t anos após a população ser n. Qual função pode ser usada para determinar a população de qualquer cidade que tivesse uma população de 500 pessoas há 20 anos?
População seria dada por P = 500 (1 + r) ^ 20 Como a população há 20 anos era 500 taxa de crescimento (da cidade é r (em frações - se é r% torná-lo r / 100) e agora (ou seja, 20 anos depois, a população seria dada por P = 500 (1 + r) ^ 20
A população de um cit cresce a uma taxa de 5% a cada ano. A população em 1990 era de 400.000. Qual seria a população atual prevista? Em que ano nós preveríamos que a população atingisse 1.000.000?
11 de outubro de 2008. A taxa de crescimento para n anos é P (1 + 5/100) ^ n O valor inicial de P = 400 000, em 1 de janeiro de 1990. Portanto, temos 400000 (1 + 5/100) ^ n Então nós precisa determinar n para 400000 (1 + 5/100) ^ n = 1000000 Divida os dois lados em 400000 (1 + 5/100) ^ n = 5/2 Registros de ln n (105/100) = ln (5/2 ) n = ln 2.5 / ln 1.05 n = 18.780 anos de progressão para 3 casas decimais Assim, o ano será 1990 + 18.780 = 2008.78 A população chega a 1 milhão até 11 de outubro de 2008.
Sob condições ideais, uma população de coelhos tem uma taxa de crescimento exponencial de 11,5% por dia. Considere uma população inicial de 900 coelhos, como você encontra a função de crescimento?
F (x) = 900 (1,115) ^ x A função de crescimento exponencial aqui assume a forma y = a (b ^ x), b> 1, a representa o valor inicial, b representa a taxa de crescimento, x é o tempo decorrido em dias. Nesse caso, recebemos um valor inicial de a = 900. Além disso, somos informados de que a taxa de crescimento diária é de 11,5%. Bem, em equilíbrio, a taxa de crescimento é de zero por cento, ou seja, a população permanece inalterada em 100%. Neste caso, no entanto, a população cresce em 11,5% do equilíbrio para (100 + 11,5)%, ou 111,5% Reescrita como um decimal,