Responda:
Termos estranhos:
Até termos:
Onde i é o número na sequência par de 1 e para cima
Explicação:
Pode haver várias possibilidades aqui, mas uma é pelo menos que é composta de duas seqüências.
1) 3, 12, 48: O próximo termo é 4 vezes o atual.
2) -16 -24: O termo seguinte é o termo atual -8 ou o termo atual vezes 1 1/2. Sem mais termos, é impossível dizer qual é o certo.
A Estação A e a Estação B estavam a 70 milhas de distância. Às 13:36, um ônibus partiu da Estação A para a Estação B a uma velocidade média de 25 mph. Às 14:00, outro ônibus partiu da Estação B para a Estação A a uma velocidade constante de 35 km / h.
Os ônibus passam uns aos outros às 15:00 hrs. Intervalo de tempo entre 14:00 e 13:36 = 24 minutos = 24/60 = 2/5 horas. O ônibus da estação A avançado em 2/5 horas é 25 * 2/5 = 10 milhas. Então ônibus da estação A e da estação B são d = 70-10 = 60 milhas à parte às 14:00 hrs. A velocidade relativa entre eles é s = 25 + 35 = 60 milhas por hora. Eles levarão tempo t = d / s = 60/60 = 1 hora quando passarem um pelo outro. Assim, os ônibus passam uns aos outros às 14: 00 + 1:; 00 = 15: 00 hrs [Ans]
O segundo termo em uma seqüência geométrica é 12. O quarto termo na mesma seqüência é 413. Qual é a proporção comum nessa seqüência?
Proporção Comum r = sqrt (413/12) Segundo termo ar = 12 Quarto termo ar ^ 3 = 413 Razão Comum r = {ar ^ 3} / {ar} r = sqrt (413/12)
Mostre que todas as seqüências poligonais geradas pela seqüência de séries aritméticas com diferença comum d, d em ZZ são seqüências poligonais que podem ser geradas por a_n = an ^ 2 + bn + c?
A_n = P_n ^ (d + 2) = an ^ 2 + b ^ n + c com a = d / 2; b = (2-d) / 2; c = 0 P_n ^ (d + 2) é uma série poligonal de hierarquia, r = d + 2 exemplo dado uma sequência aritmética pular contagem por d = 3 você terá uma sequência colorida (vermelha) (pentagonal): P_n ^ cor ( vermelho) 5 = 3 / 2n ^ 2-1 / 2n dando P_n ^ 5 = {1, cor (vermelho) 5, 12, 22,35,51, cdots} Uma sequência poligonal é construída tomando a enésima soma de uma aritmética seqüência. No cálculo, isso seria uma integração. Portanto, a hipótese chave aqui é: Como a seq